Esempio n. 1
0
        /// <summary>
        /// Predict the rating of the item by users
        /// </summary>
        private static void PredictRating(string[] args)
        {
            Console.WriteLine("Predicting ratings for Users...");
            String outputFile = Path.Combine(args[2], outputFileForRatings);

            testingFile         = Path.Combine(args[1], testingFile);
            testingFileModified = Path.Combine(args[2], testingFileModified);
            ModifyTestingFileForRating(testingFile, testingFileModified);

            float minRating = 1;
            float maxRating = 5;

            var userMapping     = new Mapping();
            var itemMapping     = new Mapping();
            var trainingData    = StaticRatingData.Read(trainingCompactFileForRatings, userMapping, itemMapping, RatingType.FLOAT, TestRatingFileFormat.WITH_RATINGS, false);
            var testUsers       = trainingData.AllUsers; // users that will be taken into account in the evaluation
            var candidate_items = trainingData.AllItems; // items that will be taken into account in the evaluation
            var testData        = StaticRatingData.Read(testingFileModified, userMapping, itemMapping, RatingType.FLOAT, TestRatingFileFormat.WITH_RATINGS, false);

            var recommender = new BiasedMatrixFactorization();

            recommender.MinRating = minRating;
            recommender.MaxRating = maxRating;
            recommender.Ratings   = trainingData;

            recommender.NumFactors = 30;
            recommender.NumIter    = 100;
            recommender.RegI       = 0.04F;
            recommender.RegU       = 0.04F;
            //recommender.BiasReg = 0.09F;
            recommender.FrequencyRegularization = true;
            recommender.BoldDriver = true;
            recommender.LearnRate  = 0.07F;

            Stopwatch timeKeeper = new Stopwatch();

            timeKeeper.Start();
            recommender.Train();
            timeKeeper.Stop();
            Console.WriteLine("time passed for training rating prediction model: " + timeKeeper.ElapsedMilliseconds);
            // measure the accuracy on the test data set

            timeKeeper = new Stopwatch();
            timeKeeper.Start();
            var results = recommender.Evaluate(testData);

            timeKeeper.Stop();
            Console.WriteLine("time passed for rating prediction: " + timeKeeper.ElapsedMilliseconds);
            Console.WriteLine("RMSE={0}", results["RMSE"]);

            recommender.WritePredictions(testData, outputFile, userMapping, itemMapping, "{0}-{1},{2}", "userID-itemID,rating");
        }
Esempio n. 2
0
        public void TestRead()
        {
            var reader = new StringReader(@"5951,50,5,2001-01-01
5951,223,5,2001-01-01
5951,260,5,2001-01-01
5951,293,5,2001-01-01
5951,356,4,2001-01-01
5951,364,3,2001-01-01
5951,457,3,2001-01-01
");

            IRatings data = StaticRatingData.Read(reader, 7);

            Assert.AreEqual(7, data.Count);
        }
Esempio n. 3
0
        public void TestReadIgnoreLine()
        {
            var reader = new StringReader(@"# first line
5951,50,5,2001-01-01 00:00:00
5951,223,5,2001-01-01 00:00:00
5951,260,5,2001-01-01 00:00:00
5951,293,5,2001-01-01 00:00:00
5951,356,4,2001-01-01 00:00:00
5951,364,3,2001-01-01 00:00:00
5951,457,3,2001-01-01 00:00:00
");

            IRatings data = StaticRatingData.Read(reader, 7, null, null, RatingType.FLOAT, TestRatingFileFormat.WITH_RATINGS, true);

            Assert.AreEqual(7, data.Count);
        }
    protected override void LoadData()
    {
        bool static_data = !online_eval;

        TimeSpan loading_time = Wrap.MeasureTime(delegate() {
            base.LoadData();

            // read training data
            if ((recommender is TimeAwareRatingPredictor || chronological_split != null) && file_format != RatingFileFormat.MOVIELENS_1M)
            {
                training_data = TimedRatingData.Read(training_file, user_mapping, item_mapping);
            }
            else
            {
                if (file_format == RatingFileFormat.DEFAULT)
                {
                    training_data = static_data
                                                ? StaticRatingData.Read(training_file, user_mapping, item_mapping, rating_type)
                                                : RatingData.Read(training_file, user_mapping, item_mapping);
                }
                else if (file_format == RatingFileFormat.IGNORE_FIRST_LINE)
                {
                    training_data = static_data
                                                ? StaticRatingData.Read(training_file, user_mapping, item_mapping, rating_type, TestRatingFileFormat.WITH_RATINGS, true)
                                                : RatingData.Read(training_file, user_mapping, item_mapping, true);
                }
                else if (file_format == RatingFileFormat.MOVIELENS_1M)
                {
                    training_data = MovieLensRatingData.Read(training_file, user_mapping, item_mapping);
                }
                else if (file_format == RatingFileFormat.KDDCUP_2011)
                {
                    training_data = MyMediaLite.IO.KDDCup2011.Ratings.Read(training_file);
                }
            }
            recommender.Ratings = training_data;

            // read test data
            if (test_file != null)
            {
                TestRatingFileFormat test_format = test_no_ratings ? TestRatingFileFormat.WITHOUT_RATINGS : TestRatingFileFormat.WITH_RATINGS;
                if (recommender is TimeAwareRatingPredictor && file_format != RatingFileFormat.MOVIELENS_1M)
                {
                    test_data = TimedRatingData.Read(test_file, user_mapping, item_mapping, test_format);
                }
                else if (file_format == RatingFileFormat.MOVIELENS_1M)
                {
                    test_data = MovieLensRatingData.Read(test_file, user_mapping, item_mapping, test_format);
                }
                else if (file_format == RatingFileFormat.KDDCUP_2011)
                {
                    test_data = MyMediaLite.IO.KDDCup2011.Ratings.Read(test_file);
                }
                else
                {
                    test_data = StaticRatingData.Read(test_file, user_mapping, item_mapping, rating_type, test_format, file_format == RatingFileFormat.IGNORE_FIRST_LINE);
                }

                if (recommender is ITransductiveRatingPredictor)
                {
                    ((ITransductiveRatingPredictor)recommender).AdditionalFeedback = test_data;
                }
            }
        });

        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "loading_time {0:0.##}", loading_time.TotalSeconds));
        Console.Error.WriteLine("memory {0}", Memory.Usage);
    }