Esempio n. 1
0
        public void intersectPrimitive(Ray r, int primID, IntersectionState state)
        {
            // intersect in local space
            float qa = r.dx * r.dx + r.dy * r.dy + r.dz * r.dz;
            float qb = 2 * ((r.dx * r.ox) + (r.dy * r.oy) + (r.dz * r.oz));
            float qc = ((r.ox * r.ox) + (r.oy * r.oy) + (r.oz * r.oz)) - 1;

            double[] t = Solvers.solveQuadric(qa, qb, qc);
            if (t != null)
            {
                // early rejection
                if (t[0] >= r.getMax() || t[1] <= r.getMin())
                {
                    return;
                }
                if (t[0] > r.getMin())
                {
                    r.setMax((float)t[0]);
                }
                else
                {
                    r.setMax((float)t[1]);
                }
                state.setIntersection(0, 0, 0);
            }
        }
Esempio n. 2
0
        public void intersectPrimitive(Ray r, int primID, IntersectionState state)
        {
            int   i3  = primID * 3;
            float ocx = r.ox - particles[i3 + 0];
            float ocy = r.oy - particles[i3 + 1];
            float ocz = r.oz - particles[i3 + 2];
            float qa  = r.dx * r.dx + r.dy * r.dy + r.dz * r.dz;
            float qb  = 2 * ((r.dx * ocx) + (r.dy * ocy) + (r.dz * ocz));
            float qc  = ((ocx * ocx) + (ocy * ocy) + (ocz * ocz)) - r2;

            double[] t = Solvers.solveQuadric(qa, qb, qc);
            if (t != null)
            {
                // early rejection
                if (t[0] >= r.getMax() || t[1] <= r.getMin())
                {
                    return;
                }
                if (t[0] > r.getMin())
                {
                    r.setMax((float)t[0]);
                }
                else
                {
                    r.setMax((float)t[1]);
                }
                state.setIntersection(primID);
            }
        }
Esempio n. 3
0
        public void getSamples(ShadingState state)
        {
            if (getNumSamples() <= 0)
            {
                return;
            }
            Vector3 wc = Point3.sub(center, state.getPoint(), new Vector3());
            float   l2 = wc.LengthSquared();

            if (l2 <= r2)
            {
                return; // inside the sphere?
            }
            // top of the sphere as viewed from the current shading point
            float topX = wc.x + state.getNormal().x *radius;
            float topY = wc.y + state.getNormal().y *radius;
            float topZ = wc.z + state.getNormal().z *radius;

            if (state.getNormal().dot(topX, topY, topZ) <= 0)
            {
                return; // top of the sphere is below the horizon
            }
            float            cosThetaMax = (float)Math.Sqrt(Math.Max(0, 1 - r2 / Vector3.dot(wc, wc)));
            OrthoNormalBasis basis       = OrthoNormalBasis.makeFromW(wc);
            int   samples = state.getDiffuseDepth() > 0 ? 1 : getNumSamples();
            float scale   = (float)(2 * Math.PI * (1 - cosThetaMax));
            Color c       = Color.mul(scale / samples, radiance);

            for (int i = 0; i < samples; i++)
            {
                // random offset on unit square
                double randX = state.getRandom(i, 0, samples);
                double randY = state.getRandom(i, 1, samples);

                // cone sampling
                double  cosTheta = (1 - randX) * cosThetaMax + randX;
                double  sinTheta = Math.Sqrt(1 - cosTheta * cosTheta);
                double  phi      = randY * 2 * Math.PI;
                Vector3 dir      = new Vector3((float)(Math.Cos(phi) * sinTheta), (float)(Math.Sin(phi) * sinTheta), (float)cosTheta);
                basis.transform(dir);

                // check that the direction of the sample is the same as the
                // normal
                float cosNx = Vector3.dot(dir, state.getNormal());
                if (cosNx <= 0)
                {
                    continue;
                }

                float    ocx = state.getPoint().x - center.x;
                float    ocy = state.getPoint().y - center.y;
                float    ocz = state.getPoint().z - center.z;
                float    qa  = Vector3.dot(dir, dir);
                float    qb  = 2 * ((dir.x * ocx) + (dir.y * ocy) + (dir.z * ocz));
                float    qc  = ((ocx * ocx) + (ocy * ocy) + (ocz * ocz)) - r2;
                double[] t   = Solvers.solveQuadric(qa, qb, qc);
                if (t == null)
                {
                    continue;
                }
                LightSample dest = new LightSample();
                // compute shadow ray to the sampled point
                dest.setShadowRay(new Ray(state.getPoint(), dir));
                // FIXME: arbitrary bias, should handle as in other places
                dest.getShadowRay().setMax((float)t[0] - 1e-3f);
                // prepare sample
                dest.setRadiance(c, c);
                dest.traceShadow(state);
                state.addSample(dest);
            }
        }
Esempio n. 4
0
        public void intersectPrimitive(Ray r, int primID, IntersectionState state)
        {
            // intersect with bounding sphere
            float qc = ((r.ox * r.ox) + (r.oy * r.oy) + (r.oz * r.oz)) - BOUNDING_RADIUS2;
            float qt = r.getMin();

            if (qc > 0)
            {
                // we are starting outside the sphere, find intersection on the
                // sphere
                float    qa = r.dx * r.dx + r.dy * r.dy + r.dz * r.dz;
                float    qb = 2 * ((r.dx * r.ox) + (r.dy * r.oy) + (r.dz * r.oz));
                double[] t  = Solvers.solveQuadric(qa, qb, qc);
                // early rejection
                if (t == null || t[0] >= r.getMax() || t[1] <= r.getMin())
                {
                    return;
                }
                qt = (float)t[0];
            }
            float dist         = float.PositiveInfinity;
            float rox          = r.ox + qt * r.dx;
            float roy          = r.oy + qt * r.dy;
            float roz          = r.oz + qt * r.dz;
            float invRayLength = (float)(1 / Math.Sqrt(r.dx * r.dx + r.dy * r.dy + r.dz * r.dz));

            // now we can start intersection
            while (true)
            {
                float zw = rox;
                float zx = roy;
                float zy = roz;
                float zz = 0;

                float zpw = 1;
                float zpx = 0;
                float zpy = 0;
                float zpz = 0;

                // run several iterations
                float dotz = 0;
                for (int i = 0; i < maxIterations; i++)
                {
                    {
                        // zp = 2 * (z * zp)
                        float nw = zw * zpw - zx * zpx - zy * zpy - zz * zpz;
                        float nx = zw * zpx + zx * zpw + zy * zpz - zz * zpy;
                        float ny = zw * zpy + zy * zpw + zz * zpx - zx * zpz;
                        zpz = 2 * (zw * zpz + zz * zpw + zx * zpy - zy * zpx);
                        zpw = 2 * nw;
                        zpx = 2 * nx;
                        zpy = 2 * ny;
                    }
                    {
                        // z = z*z + c
                        float nw = zw * zw - zx * zx - zy * zy - zz * zz + cw;
                        zx = 2 * zw * zx + cx;
                        zy = 2 * zw * zy + cy;
                        zz = 2 * zw * zz + cz;
                        zw = nw;
                    }
                    dotz = zw * zw + zx * zx + zy * zy + zz * zz;
                    if (dotz > ESCAPE_THRESHOLD)
                    {
                        break;
                    }
                }
                float normZ = (float)Math.Sqrt(dotz);
                dist = 0.5f * normZ * (float)Math.Log(normZ) / Length(zpw, zpx, zpy, zpz);
                rox += dist * r.dx;
                roy += dist * r.dy;
                roz += dist * r.dz;
                qt  += dist;
                if (dist * invRayLength < epsilon)
                {
                    break;
                }
                if (rox * rox + roy * roy + roz * roz > BOUNDING_RADIUS2)
                {
                    return;
                }
            }
            // now test t value again
            if (!r.isInside(qt))
            {
                return;
            }
            if (dist * invRayLength < epsilon)
            {
                // valid hit
                r.setMax(qt);
                state.setIntersection(0);
            }
        }