Esempio n. 1
0
        /// <summary>
        /// Define SimulationInput to describe homogeneous and two layer tissue
        /// </summary>
        /// <returns></returns>
        private void GenerateReferenceDatabase()
        {
            var simulationOptions = new SimulationOptions(
                0,
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Discrete,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>()
            {
                DatabaseType.pMCDiffuseReflectance
            },
                false, // track statistics
                0.0,   // RR threshold -> 0 = no RR performed
                0);
            var sourceInput = new DirectionalPointSourceInput(
                new Position(0.0, 0.0, 0.0),
                new Direction(0.0, 0.0, 1.0),
                1);
            var detectorInputs = new List <IDetectorInput>()
            {
                new ROfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101)
                },
                new ROfRhoAndTimeDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Time = new DoubleRange(0.0, 1.0, 101)
                }
            };

            _referenceInputTwoLayerTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                sourceInput,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerRegion(
                    new DoubleRange(0.0, _layerThickness),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerRegion(
                    new DoubleRange(_layerThickness, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectorInputs);

            _factor = 1.0 - Optics.Specular(
                _referenceInputTwoLayerTissue.TissueInput.Regions[0].RegionOP.N,
                _referenceInputTwoLayerTissue.TissueInput.Regions[1].RegionOP.N);
            _referenceOutputTwoLayerTissue = new MonteCarloSimulation(_referenceInputTwoLayerTissue).Run();
            _databaseTwoLayerTissue        = pMCDatabase.FromFile("DiffuseReflectanceDatabase", "CollisionInfoDatabase");
        }
        public SimulationOptionsViewModel(SimulationOptions options)
        {
            _simulationOptions = options; // use the property to invoke the appropriate change notification

#if WHITELIST
            _absorptionWeightingTypeVM   = new OptionViewModel <AbsorptionWeightingType>("Absorption Weighting Type:", false, _simulationOptions.AbsorptionWeightingType, WhiteList.AbsorptionWeightingTypes);
            _randomNumberGeneratorTypeVM = new OptionViewModel <RandomNumberGeneratorType>("Random Number Generator Type:", false, _simulationOptions.RandomNumberGeneratorType, WhiteList.RandomNumberGeneratorTypes);
            _phaseFunctionTypeVM         = new OptionViewModel <PhaseFunctionType>("Phase Function Type:", false, _simulationOptions.PhaseFunctionType, WhiteList.PhaseFunctionTypes);
#else
            _absorptionWeightingTypeVM = new OptionViewModel <AbsorptionWeightingType>("Absorption Weighting Type:",
                                                                                       false, _simulationOptions.AbsorptionWeightingType);
            _randomNumberGeneratorTypeVM = new OptionViewModel <RandomNumberGeneratorType>("Random Number Generator:",
                                                                                           false, _simulationOptions.RandomNumberGeneratorType);
            _phaseFunctionTypeVM = new OptionViewModel <PhaseFunctionType>("Phase Function Type:", false,
                                                                           _simulationOptions.PhaseFunctionType);
#endif
            SetStatisticsFolderCommand = new RelayCommand(() => MC_SetStatisticsFolder_Executed(null, null));

            _absorptionWeightingTypeVM.PropertyChanged += (sender, args) =>
                                                          _simulationOptions.AbsorptionWeightingType = _absorptionWeightingTypeVM.SelectedValue;
            _randomNumberGeneratorTypeVM.PropertyChanged += (sender, args) =>
                                                            _simulationOptions.RandomNumberGeneratorType = _randomNumberGeneratorTypeVM.SelectedValue;
            _phaseFunctionTypeVM.PropertyChanged += (sender, args) =>
                                                    _simulationOptions.PhaseFunctionType = _phaseFunctionTypeVM.SelectedValue;
        }
Esempio n. 3
0
        public IEnumerable <SimulationResult> Run(SimulationOptions options)
        {
            var cardPairs = GeneratePairs(GenerateCards());

            foreach (var cards in cardPairs)
            {
                IntermediateSimulationResult result = ComputeChances(options, cards.ToList());

                var wonRate       = (double)result.Won / result.Runs;
                var wonSingleRate = (double)result.WonSingle / result.Runs;
                var drawRate      = (double)result.Draw / result.Runs;
                var loseRate      = (double)(result.Runs - result.Won) / result.Runs;
                yield return(new SimulationResult
                {
                    Card1 = cards[0],
                    Card2 = cards[1],
                    WonRate = wonRate,
                    WonSingleRate = wonSingleRate,
                    DrawRate = drawRate,
                    LoseRate = loseRate,
                    Runs = result.Runs,
                    ConfidenceLevel = options.ConfidenceLevel,
                    PlayerCount = options.PlayerCount,
                    WinLoseRatesRelativeError = options.WinLoseRatesDesiredRelativeError,
                    Balance = result.Balance / result.Runs
                });
            }
        }
Esempio n. 4
0
 public void Start(SimulationOptions options)
 {
     if (!_callCenter.IsRunning)
     {
         _callCenter.Start(options);
     }
 }
        /// <summary>
        /// Initializes a new instance of the ModuleBlackboardServer class
        /// </summary>
        /// <param name="name">Module name</param>
        /// <param name="port">Port for accepting incoming connections</param>
        internal ModuleBlackboardServer(string name, int port)
        {
            if ((port < 1024) || (port > 65535))
            {
                throw new ArgumentException("Port must be between 1024 and 65535", "port");
            }
            if (!Regex.IsMatch(name, @"\w[\w\-_\d]{2,}"))
            {
                throw new ArgumentException("Invalid module name", "name");
            }
            this.name = name;
            this.port = port;
            this.busy = false;
            //this.waitingResponse = new List<Command>(10);
            //this.responses = new List<Response>();
            //this.commands = new List<Command>();
            this.prototypes         = new PrototypeCollection(this);
            this.lockList           = new List <Command>();
            this.restartActions     = new ActionCollection(this);
            this.restartTestActions = new ActionCollection(this);
            this.startupActions     = new ActionCollection(this);
            this.stopActions        = new ActionCollection(this);
            this.dataReceived       = new Queue <byte[]>(10);

            this.restartRequested     = false;
            this.restartTestRequested = false;
            this.simOptions           = SimulationOptions.SimulationDisabled;
        }
Esempio n. 6
0
        private void CreateNewProject()
        {
            // Устанавливаем дефолтные значения
            testTabControl.Items.Clear();
            drawAreas.Clear();
            processes.Clear();

            mainProcess         = new SimulationOptions();
            mainProcessNumber   = 0;
            processNamesCounter = 1;

            // Создаём процесс
            //Process process = new Process() { Description = mainProcess.Description };
            processes.Add(mainProcess); // Добавляем в список процессов

            var tabItem = new TabItem()
            {
                Header = mainProcess
            };

            testTabControl.SelectedItem = tabItem;

            // Создаём область рисования
            var drawArea = new DrawArea()
            {
                Processes = processes
            };

            drawAreas.Add(drawArea);
            tabItem.Content = drawArea;

            testTabControl.Items.Add(tabItem);

            SetTheme();
        }
        private void InitComponents(SimulationOptions options)
        {
            m_PrSimulator   = new PrSimulator(options);
            m_StSimulator   = new StSimulator(options);
            m_DiffGenerator = new DiffGenerator(m_PrSimulator, m_StSimulator);

            m_Visualizer = new Visualizer2D();
        }
Esempio n. 8
0
 protected virtual List <Player> MakePlayers(SimulationOptions options, int startingPot)
 {
     return(Enumerable
            .Range(0, options.PlayerCount)
            .Select(i => new Player()
     {
         PlayerPot = startingPot,
         Strategy = new AllInStrategy()
     }).ToList());
 }
Esempio n. 9
0
        public SimulationOptionsDialog(SimulationOptions options)
        {
            InitializeComponent();
            DataContext = this;

            WidthSetting  = options.Size.Width;
            HeightSetting = options.Size.Height;
            StartXSetting = options.StartLocation.J + 1;
            StartYSetting = options.StartLocation.I + 1;
        }
Esempio n. 10
0
 public void UpdateChildControlsWithNewOptions(SimulationOptions newOptions)
 {
     for (int i = 0; i <= 8; i++)
     {
         CheckedListBox_BirthConditions.SetItemChecked(i, newOptions.birthConditions[i]);
         CheckedListBox_KillConditions.SetItemChecked(i, newOptions.killConditions[i]);
     }
     CheckBox_ConnectEdges.Checked = newOptions.connectEdges;
     NumericUpDown_FPS.Value       = (decimal)(1000.0 / newOptions.frameDuration);
 }
Esempio n. 11
0
        public void validate_random_number_seed_is_correct()
        {
            var random1       = new SimulationOptions(-1);
            var deterministic = new SimulationOptions(1);

            Assert.AreNotEqual(random1.Seed, deterministic.Seed);
            // Setting a random seed now performed in RNGFactory
            //System.Threading.Thread.Sleep(1000);
            //var random2 = new SimulationOptions(-1);
            //Assert.AreNotEqual(random1.Seed, random2.Seed);
        }
Esempio n. 12
0
 protected override List <Player> MakePlayers(SimulationOptions options, int startingPot)
 {
     return(Enumerable
            .Range(0, options.PlayerCount)
            .Select(i => new Player()
     {
         PlayerPot = startingPot,
         Strategy = i == 0
                     ? new AllInStrategy()
                     : (IPlayerStrategy) new FoldBadCardsOrAllInStrategy()
     }).ToList());
 }
Esempio n. 13
0
        static void Main(string[] args)
        {
            var         options = new SimulationOptions(new GridSize(11, 11), new GridIndex(5, 5));
            PrSimulator pr      = new PrSimulator(options);
            StSimulator st      = new StSimulator(options);

            Func <double, double, double> u = (x, y) => Math.Log(Math.Sqrt((x / 10 + 3) * (x / 10 + 3) + (y / 10 + 3) * (y / 10 + 3)));


            File.WriteAllLines("comp_pr.csv", CalcPr(pr, u).Select(x => $"{x.Item1.ToString("E20")};{x.Item2.ToString("E20")}"), Encoding.UTF8);
            Console.WriteLine("Finished pr");
            File.WriteAllLines("comp_st.csv", CalcSt(st, u).Select(x => $"{x.Item1.ToString("E20")};{x.Item2.ToString("E20")}"), Encoding.UTF8);
        }
Esempio n. 14
0
        public void validate_null_database_input_gets_converted_to_empty_list_correctly()
        {
            var so = new SimulationOptions(
                0,
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Discrete,
                PhaseFunctionType.Bidirectional,
                null,
                false,
                0.0,
                0);

            Assert.IsTrue(so.Databases.Count == 0);
        }
Esempio n. 15
0
 public static SimulationOptions loadSimulationOptionsFromDisk()
 {
     try
     {
         if (File.Exists(SIM_SETTINGS_FILE_NAME))
         {
             SimulationOptions simulationOptions = null;
             FileStream        fileStream        = new FileStream(SIM_SETTINGS_FILE_NAME, FileMode.Open);
             simulationOptions = (SimulationOptions)formatter.Deserialize(fileStream);
             fileStream.Close();
             return(simulationOptions);
         }
         return(new SimulationOptions());
     }
     catch
     {
         return(new SimulationOptions());
     }
 }
Esempio n. 16
0
    public void StartSimulation(SimulationData simulationData, SimulationOptions options = new SimulationOptions())
    {
        var containerObject = new GameObject("SimulationConfig");

        containerObject.tag = "SimulationConfig";
        var configContainer = containerObject.AddComponent <SimulationConfigContainer>();

        configContainer.Config = new SimulationConfig();
        configContainer.Config.SimulationData = simulationData;
        configContainer.Config.Options        = options;
        DontDestroyOnLoad(containerObject);

        InputRegistry.shared.Deregister(this);

        Physics.autoSimulation     = false;
        Physics.autoSyncTransforms = false;

        // Load simulation scene
        SceneController.LoadSync(SceneController.Scene.SimulationContainer);
    }
Esempio n. 17
0
        public MainViewModel()
        {
            var logger = Logger.New(typeof(MainViewModel));

            using (logger.LogPerf("Init"))
            {
                SettingsCommand = new DelegateCommand(_ =>
                {
                    var dlg = new SettingsDialog {
                        ViewModel = new SettingsViewModel()
                    };
                    dlg.ShowDialog();
                });

                SimulationOptions options = new SimulationOptions(new GridSize(9, 9), new GridIndex(4, 4));

                Tabs.Add(new PrTabViewModel(options));
                Tabs.Add(new StTabViewModel(options));
                Tabs.Add(new CpTabViewModel(options));
                Tabs.Add(new СlTabViewModel());

                SelectedTab = Tabs.First();
            }
        }
Esempio n. 18
0
        public void Start(SimulationOptions options)
        {
            CallCenterHubAppendLine("Simulation starting");

            if (_isRunning)
            {
                throw new Exception("Already started");
            }

            _options = options;
            var id     = 1;
            var callId = 1;

            for (var i = 0; i < _options.OperatorCount; i++)
            {
                var @operator = new Operator(id++, OperatorTitle.Operator);
                _operators.Add(@operator);
            }

            for (var i = 0; i < _options.ManagerCount; i++)
            {
                var @operator = new Operator(id++, OperatorTitle.Manager);
                _operators.Add(@operator);
            }

            for (var i = 0; i < _options.SeniorManagerCount; i++)
            {
                var @operator = new Operator(id++, OperatorTitle.SeniorManager);
                _operators.Add(@operator);
            }

            for (var i = 0; i < _options.CallsAmount; i++)
            {
                var duration = _random.Next(_options.MinSecAnswer, _options.MaxSecAnswer);
                var call     = new Call {
                    Id = callId++, Duration = duration, IsActive = true
                };
                _calls.Add(call);
            }

            foreach (var @operator in _operators)
            {
                @operator.StatusChanged += operator_StatusChanged;
                var thread = new Thread(() => @operator.Start());
                thread.Start();
            }

            _isRunning = true;
            CallCenterHubAppendLine("Simulation started");

            CallCenterHubAppendLine("Operators starts answer the calls.");

            while (_calls.Any() || _awaitingCalls.Any())
            {
                Task task = null;

                if (_calls.Any() || _awaitingCalls.Any())
                {
                    var call = _calls.FirstOrDefault();

                    if (call == null)
                    {
                        call = _awaitingCalls.Where(x => x.IsActive == true).FirstOrDefault();
                        if (call == null)
                        {
                            CallCenterHubAppendLine("Calls are ended");
                            _awaitingCalls.Clear();
                        }
                    }

                    if (call != null)
                    {
                        Thread.Sleep(call.Duration * 1000 / 15);
                        CallCenterHubAppendLine("Sending a call");
                        task = Task.Run(() => SendingCallsAsync());
                        task.Wait();
                    }
                }
            }

            WaitForEmployeeEndsCalls();
            Stop();
        }
        public void execute_Monte_Carlo()
        {
            // delete previously generated files
            clear_folders_and_files();

            // instantiate common classes
            var simulationOptions = new SimulationOptions(
                0,
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Discrete,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>()
            {
            },         // databases to be written
                false, // track statistics
                0.0,   // RR threshold -> 0 = no RR performed
                0);
            var source = new DirectionalPointSourceInput(
                new Position(0.0, 0.0, 0.0),
                new Direction(0.0, 0.0, 1.0),
                1);      // start inside tissue
            var oneLayerDetectors = new List <IDetectorInput>
            {
                new ROfFxDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 11), TallySecondMoment = true
                },
                new TOfFxDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 11)
                },
                new ReflectedDynamicMTOfFxAndSubregionHistDetectorInput()
                {
                    Fx                  = new DoubleRange(0.0, 0.5, 11),   // fx bins MAKE SURE AGREES with ROfFx fx specification for unit test below
                    Z                   = new DoubleRange(0.0, 10.0, 21),
                    MTBins              = new DoubleRange(0.0, 500.0, 51), // MT bins
                    FractionalMTBins    = new DoubleRange(0.0, 1.0, 11),
                    BloodVolumeFraction = new List <double>()
                    {
                        0, 0.5, 0
                    }
                },
                new TransmittedDynamicMTOfFxAndSubregionHistDetectorInput()
                {
                    Fx                  = new DoubleRange(0.0, 0.5, 11),   // fx bins MAKE SURE AGREES with TOfFx fx specification for unit test below
                    Z                   = new DoubleRange(0.0, 10.0, 21),
                    MTBins              = new DoubleRange(0.0, 500.0, 51), // MT bins
                    FractionalMTBins    = new DoubleRange(0.0, 1.0, 11),
                    BloodVolumeFraction = new List <double>()
                    {
                        0, 0.5, 0
                    }
                },
            };

            _inputOneLayerTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                oneLayerDetectors);
            _outputOneLayerTissue = new MonteCarloSimulation(_inputOneLayerTissue).Run();

            var twoLayerDetectors = new List <IDetectorInput>
            {
                new ReflectedDynamicMTOfFxAndSubregionHistDetectorInput()
                {
                    Fx                  = new DoubleRange(0.0, 0.5, 11),
                    Z                   = new DoubleRange(0.0, 10.0, 21),
                    MTBins              = new DoubleRange(0.0, 500.0, 51), // MT bins
                    FractionalMTBins    = new DoubleRange(0.0, 1.0, 11),
                    BloodVolumeFraction = new List <double>()
                    {
                        0, 0.2, 0.5, 0
                    }
                },
                new TransmittedDynamicMTOfFxAndSubregionHistDetectorInput()
                {
                    Fx                  = new DoubleRange(0.0, 0.5, 11),
                    Z                   = new DoubleRange(0.0, 10.0, 21),
                    MTBins              = new DoubleRange(0.0, 500.0, 51), // MT bins
                    FractionalMTBins    = new DoubleRange(0.0, 1.0, 11),
                    BloodVolumeFraction = new List <double>()
                    {
                        0, 0.2, 0.5, 0
                    }
                }
            };

            _inputTwoLayerTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, _layerThickness),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(_layerThickness, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                twoLayerDetectors);
            _outputTwoLayerTissue = new MonteCarloSimulation(_inputTwoLayerTissue).Run();
        }
Esempio n. 20
0
        public void execute_Monte_Carlo()
        {
            // delete previously generated files
            clear_folders_and_files();

            var simulationOptions = new SimulationOptions(
                0,
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Continuous,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>()
            {
                DatabaseType.pMCDiffuseReflectance
            },
                false, // track statistics
                0.0,   // RR threshold -> 0 = no RR performed
                0);
            var sourceInput = new DirectionalPointSourceInput(
                new Position(0.0, 0.0, 0.0),
                new Direction(0.0, 0.0, 1.0),
                1);
            var detectorInputs = new List <IDetectorInput>()
            {
                new ROfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101)
                },
                new ROfRhoAndTimeDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Time = new DoubleRange(0.0, 1.0, 101)
                },
                new ROfFxDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 11)
                },
                new ROfFxAndTimeDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 11), Time = new DoubleRange(0.0, 1.0, 101)
                }
            };

            _referenceInputOneLayerTissue = new SimulationInput(
                100,
                "",  // can't create folder in isolated storage
                simulationOptions,
                sourceInput,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectorInputs);
            _factor = 1.0 - Optics.Specular(
                _referenceInputOneLayerTissue.TissueInput.Regions[0].RegionOP.N,
                _referenceInputOneLayerTissue.TissueInput.Regions[1].RegionOP.N);
            _referenceOutputOneLayerTissue = new MonteCarloSimulation(_referenceInputOneLayerTissue).Run();

            _databaseOneLayerTissue = pMCDatabase.FromFile("DiffuseReflectanceDatabase", "CollisionInfoDatabase");
        }
        public void execute_Monte_Carlo()
        {
            // delete previously generated files
            clear_folders_and_files();

            // instantiate common classes
            var simulationOptions = new SimulationOptions(
                0,
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Discrete,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>()
            {
            },         // databases to be written
                false, // track statistics
                0.0,   // RR threshold -> 0 = no RR performed
                0);
            var source = new DirectionalPointSourceInput(
                new Position(0.0, 0.0, 0.0),
                new Direction(0.0, 0.0, 1.0),
                1);      // start inside tissue
            var detectors =
                new List <IDetectorInput>
            {
                new RDiffuseDetectorInput(),
                new ROfAngleDetectorInput()
                {
                    Angle = new DoubleRange(Math.PI / 2, Math.PI, 2)
                },
                new ROfXAndYDetectorInput()
                {
                    X = new DoubleRange(-200.0, 200.0, 401), Y = new DoubleRange(-200.0, 200.0, 401)
                },
                new TDiffuseDetectorInput(),
                new TOfAngleDetectorInput()
                {
                    Angle = new DoubleRange(0.0, Math.PI / 2, 2)
                },
                new ATotalDetectorInput(),
            };

            _inputOneRegionTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectors);
            _outputOneRegionTissue = new MonteCarloSimulation(_inputOneRegionTissue).Run();

            _inputTwoRegionTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                new SingleVoxelTissueInput(
                    new VoxelTissueRegion(
                        new DoubleRange(-5, 5),
                        new DoubleRange(-5, 5),
                        new DoubleRange(1e-9, 5),                  // smallest Z.Start with tests passing is 1e-9
                        new OpticalProperties(0.01, 1.0, 0.8, 1.4) //debug with g=1
                        ),
                    new LayerTissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, 20.0),                  // debug with thin slab d=2
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)), // debug with g=1
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectors);
            _outputTwoRegionTissue = new MonteCarloSimulation(_inputTwoRegionTissue).Run();

            _factor = 1.0 - Optics.Specular(
                _inputOneRegionTissue.TissueInput.Regions[0].RegionOP.N,
                _inputOneRegionTissue.TissueInput.Regions[1].RegionOP.N);
        }
        public void execute_Monte_Carlo()
        {
            // delete previously generated files
            clear_folders_and_files();

            // instantiate common classes
            var simulationOptions = new SimulationOptions(
                0,
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Discrete,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>()
            {
            },         // databases to be written
                false, // track statistics
                0.0,   // RR threshold -> 0 = no RR performed
                0);
            var source = new DirectionalPointSourceInput(
                new Position(0.0, 0.0, 0.0),
                new Direction(0.0, 0.0, 1.0),
                1);      // start inside tissue
            var detectors = new List <IDetectorInput>
            {
                new RDiffuseDetectorInput(),
                new ROfAngleDetectorInput()
                {
                    Angle = new DoubleRange(Math.PI / 2, Math.PI, 2)
                },
                new ROfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), TallySecondMoment = true
                },
                new ROfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Angle = new DoubleRange(Math.PI / 2, Math.PI, 2)
                },
                new ROfRhoAndTimeDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Time = new DoubleRange(0.0, 1.0, 101), TallySecondMoment = true
                },
                new ROfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 101), Y = new DoubleRange(-10.0, 10.0, 101)
                },
                new ROfRhoAndOmegaDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Omega = new DoubleRange(0.05, 1.0, 20)
                },                                                                                                                      // DJC - edited to reflect frequency sampling points (not bins)
                new ROfFxDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 51)
                },
                new TDiffuseDetectorInput(),
                new TOfAngleDetectorInput()
                {
                    Angle = new DoubleRange(0.0, Math.PI / 2, 2)
                },
                new TOfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101)
                },
                new TOfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Angle = new DoubleRange(0.0, Math.PI / 2, 2)
                },
                new TOfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 101), Y = new DoubleRange(-10.0, 10.0, 101)
                },
                new TOfFxDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 51)
                },
                new AOfRhoAndZDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Z = new DoubleRange(0.0, 10.0, 101)
                },
                new AOfXAndYAndZDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 101),
                    Y = new DoubleRange(-10.0, 10.0, 101),
                    Z = new DoubleRange(0.0, 10.0, 101),
                    TallySecondMoment = true
                },
                new ATotalDetectorInput()
                {
                    TallySecondMoment = true
                },
                new FluenceOfRhoAndZDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Z = new DoubleRange(0.0, 10.0, 101)
                },
                new FluenceOfXAndYAndZDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11),
                    Y = new DoubleRange(-10.0, 10.0, 11),
                    Z = new DoubleRange(0.0, 10.0, 11),
                    TallySecondMoment = true
                },
                new FluenceOfXAndYAndZAndOmegaDetectorInput()
                {
                    X     = new DoubleRange(-10.0, 10.0, 11),
                    Y     = new DoubleRange(-10.0, 10.0, 11),
                    Z     = new DoubleRange(0.0, 10.0, 11),
                    Omega = new DoubleRange(0.05, 1.0, 20)
                },
                new RadianceOfRhoAtZDetectorInput()
                {
                    ZDepth = _dosimetryDepth, Rho = new DoubleRange(0.0, 10.0, 101)
                },
                new RadianceOfRhoAndZAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Z = new DoubleRange(0.0, 10.0, 101), Angle = new DoubleRange(0, Math.PI, 5)
                },
                new RadianceOfFxAndZAndAngleDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 51), Z = new DoubleRange(0.0, 10, 101), Angle = new DoubleRange(0, Math.PI, 5)
                },
                new RadianceOfXAndYAndZAndThetaAndPhiDetectorInput()
                {
                    X     = new DoubleRange(-10.0, 10.0, 11),
                    Y     = new DoubleRange(-10.0, 10.0, 11),
                    Z     = new DoubleRange(0.0, 10.0, 11),
                    Theta = new DoubleRange(0.0, Math.PI, 5),      // theta (polar angle)
                    Phi   = new DoubleRange(-Math.PI, Math.PI, 5), // phi (azimuthal angle)
                },
                new ReflectedMTOfRhoAndSubregionHistDetectorInput()
                {
                    Rho              = new DoubleRange(0.0, 10.0, 101), // rho bins MAKE SURE AGREES with ROfRho rho specification for unit test below
                    MTBins           = new DoubleRange(0.0, 500.0, 51), // MT bins
                    FractionalMTBins = new DoubleRange(0.0, 1.0, 11)
                },
                new TransmittedMTOfRhoAndSubregionHistDetectorInput()
                {
                    Rho              = new DoubleRange(0.0, 10.0, 101), // rho bins MAKE SURE AGREES with TOfRho rho specification for unit test below
                    MTBins           = new DoubleRange(0.0, 500.0, 51), // MT bins
                    FractionalMTBins = new DoubleRange(0.0, 1.0, 11)
                },
                new ReflectedMTOfXAndYAndSubregionHistDetectorInput()
                {
                    X                 = new DoubleRange(-10.0, 10.0, 101),
                    Y                 = new DoubleRange(-10.0, 10.0, 101),
                    MTBins            = new DoubleRange(0.0, 500.0, 51), // MT bins
                    FractionalMTBins  = new DoubleRange(0.0, 1.0, 11),
                    TallySecondMoment = true
                },
                new TransmittedMTOfXAndYAndSubregionHistDetectorInput()
                {
                    X                = new DoubleRange(-10.0, 10.0, 101),
                    Y                = new DoubleRange(-10.0, 10.0, 101),
                    MTBins           = new DoubleRange(0.0, 500.0, 51), // MT bins
                    FractionalMTBins = new DoubleRange(0.0, 1.0, 11)
                }
            };

            _inputOneLayerTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectors);
            _outputOneLayerTissue = new MonteCarloSimulation(_inputOneLayerTissue).Run();

            _inputTwoLayerTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, _layerThickness),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(_layerThickness, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectors);
            _outputTwoLayerTissue = new MonteCarloSimulation(_inputTwoLayerTissue).Run();

            _factor = 1.0 - Optics.Specular(
                _inputOneLayerTissue.TissueInput.Regions[0].RegionOP.N,
                _inputOneLayerTissue.TissueInput.Regions[1].RegionOP.N);
        }
        public void execute_Monte_Carlo()
        {
            // delete any previously generated files
            clear_folders_and_files();

            // instantiate common classes
            var simulationOptions = new SimulationOptions(
                0,     // rng seed = same as linux (0)
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Continuous,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>()
            {
            },           // databases to be written
                false,   // track statistics
                0.0,     // RR threshold -> 0 = no RR performed
                0);
            var source = new DirectionalPointSourceInput(
                new Position(0.0, 0.0, 0.0),
                new Direction(0.0, 0.0, 1.0),
                1);     // start inside tissue
            var detectors =
                new List <IDetectorInput>
            {
                new ATotalDetectorInput(),
                new RDiffuseDetectorInput()
                {
                    TallySecondMoment = true
                },
                new ROfAngleDetectorInput()
                {
                    Angle = new DoubleRange(Math.PI / 2, Math.PI, 2)
                },
                new ROfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Angle = new DoubleRange(Math.PI / 2, Math.PI, 2)
                },
                new ROfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), TallySecondMoment = true
                },
                new ROfRhoAndTimeDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Time = new DoubleRange(0.0, 1.0, 101)
                },
                new ROfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 101), Y = new DoubleRange(-10.0, 10.0, 101)
                },
                new ROfRhoAndOmegaDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Omega = new DoubleRange(0.05, 1.0, 20)
                },                                                                                                                      // DJC - edited to reflect frequency sampling points (not bins)
                new TDiffuseDetectorInput(),
                new TOfAngleDetectorInput()
                {
                    Angle = new DoubleRange(0.0, Math.PI / 2, 2)
                },
                new TOfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101)
                },
                new TOfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Angle = new DoubleRange(0.0, Math.PI / 2, 2)
                },
                new TOfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 101), Y = new DoubleRange(-10.0, 10.0, 101)
                },
                new ReflectedTimeOfRhoAndSubregionHistDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 101), Time = new DoubleRange(0.0, 1.0, 101)
                },
            };
            // one tissue layer
            var inputOneLayerTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectors);

            _outputOneLayerTissue = new MonteCarloSimulation(inputOneLayerTissue).Run();
            // two tissue layers with same optical properties
            var inputTwoLayerTissue = new SimulationInput(
                100,
                "Output",
                simulationOptions,
                source,
                new MultiLayerTissueInput(
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, _layerThickness),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(_layerThickness, 20.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(20.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectors);

            _outputTwoLayerTissue = new MonteCarloSimulation(inputTwoLayerTissue).Run();

            _factor = 1.0 - Optics.Specular(
                inputOneLayerTissue.TissueInput.Regions[0].RegionOP.N,
                inputOneLayerTissue.TissueInput.Regions[1].RegionOP.N);
        }
Esempio n. 24
0
        public void execute_Monte_Carlo()
        {
            // instantiate common classes
            var simulationOptions = new SimulationOptions(
                0,
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Discrete,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>()
            {
                DatabaseType.pMCDiffuseReflectance
            },         // write database for pMC tests
                false, // track statistics
                0.0,   // RR threshold -> 0 = no RR performed
                0);
            var source = new DirectionalPointSourceInput(
                new Position(0.0, 0.0, 0.0),
                new Direction(0.0, 0.0, 1.0),
                0);      // start in air
            var tissue = new MultiLayerTissueInput(
                new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, 10.0),     // make tissue layer thin so transmittance results improved
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(10.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            });
            var detectorsNA0 = new List <IDetectorInput>
            {
                new RDiffuseDetectorInput()
                {
                    FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfAngleDetectorInput()
                {
                    Angle = new DoubleRange(Math.PI / 2, Math.PI, 2), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Angle = new DoubleRange(Math.PI / 2, Math.PI, 2), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfRhoAndTimeDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Time = new DoubleRange(0.0, 1.0, 11), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfRhoAndOmegaDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Omega = new DoubleRange(0.05, 1.0, 20), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfXAndYAndTimeDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), Time = new DoubleRange(0, 1, 11), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfXAndYAndMaxDepthDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), MaxDepth = new DoubleRange(0, 10.0, 11), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfFxDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 51), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new ROfFxAndTimeDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 51), Time = new DoubleRange(0.0, 1.0, 11), FinalTissueRegionIndex = 0, NA = 0.0
                },
                new RSpecularDetectorInput()
                {
                    FinalTissueRegionIndex = 0, NA = 0.0
                },
                new TDiffuseDetectorInput()
                {
                    FinalTissueRegionIndex = 2, NA = 0.0
                },
                new TOfAngleDetectorInput()
                {
                    Angle = new DoubleRange(0.0, Math.PI / 2, 2), FinalTissueRegionIndex = 2, NA = 0.0
                },
                new TOfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Angle = new DoubleRange(0.0, Math.PI / 2, 2), FinalTissueRegionIndex = 2, NA = 0.0
                },
                new TOfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), FinalTissueRegionIndex = 2, NA = 0.0
                },
                new TOfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), FinalTissueRegionIndex = 2, NA = 0.0
                },
                new RadianceOfRhoAtZDetectorInput()
                {
                    ZDepth = _dosimetryDepth, Rho = new DoubleRange(0.0, 10.0, 11), FinalTissueRegionIndex = 1, NA = 0.0
                },

                new ReflectedMTOfRhoAndSubregionHistDetectorInput()
                {
                    Rho                    = new DoubleRange(0.0, 10.0, 11),
                    MTBins                 = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins       = new DoubleRange(0.0, 1.0, 11),
                    FinalTissueRegionIndex = 0,
                    NA = 0.0
                },
                new ReflectedMTOfXAndYAndSubregionHistDetectorInput()
                {
                    X                      = new DoubleRange(-10.0, 10.0, 11),
                    Y                      = new DoubleRange(-10.0, 10.0, 11),
                    MTBins                 = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins       = new DoubleRange(0.0, 1.0, 11),
                    FinalTissueRegionIndex = 0,
                    NA                     = 0.0
                },
                new TransmittedMTOfRhoAndSubregionHistDetectorInput()
                {
                    Rho                    = new DoubleRange(0.0, 10.0, 11),
                    MTBins                 = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins       = new DoubleRange(0.0, 1.0, 11),
                    FinalTissueRegionIndex = 2,
                    NA = 0.0
                },
                new TransmittedMTOfXAndYAndSubregionHistDetectorInput()
                {
                    X                      = new DoubleRange(-10.0, 10.0, 11),
                    Y                      = new DoubleRange(-10.0, 10.0, 11),
                    MTBins                 = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins       = new DoubleRange(0.0, 1.0, 11),
                    FinalTissueRegionIndex = 2,
                    NA                     = 0.0
                },
            };
            var input = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                tissue,
                detectorsNA0);

            _outputNA0 = new MonteCarloSimulation(input).Run();

            _inputForPMC = input;                                                                       // set pMC input to one that specified database generation
            _pMCDatabase = pMCDatabase.FromFile("DiffuseReflectanceDatabase", "CollisionInfoDatabase"); // grab database


            var detectorsNA0p3 = new List <IDetectorInput>
            {
                new RDiffuseDetectorInput()
                {
                    FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfAngleDetectorInput()
                {
                    Angle = new DoubleRange(Math.PI / 2, Math.PI, 2), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Angle = new DoubleRange(Math.PI / 2, Math.PI, 2), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfRhoAndTimeDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Time = new DoubleRange(0.0, 1.0, 11), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfRhoAndOmegaDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Omega = new DoubleRange(0.05, 1.0, 20), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfXAndYAndTimeDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), Time = new DoubleRange(0, 1, 11), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfXAndYAndMaxDepthDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), MaxDepth = new DoubleRange(0, 10.0, 11), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfFxDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 51), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfFxAndTimeDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 5), Time = new DoubleRange(0.0, 1.0, 11), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new RSpecularDetectorInput()
                {
                    FinalTissueRegionIndex = 0, NA = 0.3
                },
                new TDiffuseDetectorInput()
                {
                    FinalTissueRegionIndex = 2, NA = 0.3
                },
                new TOfAngleDetectorInput()
                {
                    Angle = new DoubleRange(0.0, Math.PI / 2, 2), FinalTissueRegionIndex = 2, NA = 0.3
                },
                new TOfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Angle = new DoubleRange(0.0, Math.PI / 2, 2), FinalTissueRegionIndex = 2, NA = 0.3
                },
                new TOfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), FinalTissueRegionIndex = 2, NA = 0.3
                },
                new TOfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), FinalTissueRegionIndex = 2, NA = 0.3
                },

                new RadianceOfRhoAtZDetectorInput()
                {
                    ZDepth = _dosimetryDepth, Rho = new DoubleRange(0.0, 10.0, 11), FinalTissueRegionIndex = 1, NA = 0.3
                },

                new ReflectedMTOfRhoAndSubregionHistDetectorInput()
                {
                    Rho                    = new DoubleRange(0.0, 10.0, 11),
                    MTBins                 = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins       = new DoubleRange(0.0, 1.0, 11),
                    FinalTissueRegionIndex = 0,
                    NA = 0.3
                },
                new ReflectedMTOfXAndYAndSubregionHistDetectorInput()
                {
                    X                      = new DoubleRange(-10.0, 10.0, 11),
                    Y                      = new DoubleRange(-10.0, 10.0, 11),
                    MTBins                 = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins       = new DoubleRange(0.0, 1.0, 11),
                    FinalTissueRegionIndex = 0,
                    NA                     = 0.3
                },
                new TransmittedMTOfRhoAndSubregionHistDetectorInput()
                {
                    Rho                    = new DoubleRange(0.0, 10.0, 11),
                    MTBins                 = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins       = new DoubleRange(0.0, 1.0, 11),
                    FinalTissueRegionIndex = 2,
                    NA = 0.3
                },
                new TransmittedMTOfXAndYAndSubregionHistDetectorInput()
                {
                    X                      = new DoubleRange(-10.0, 10.0, 11),
                    Y                      = new DoubleRange(-10.0, 10.0, 11),
                    MTBins                 = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins       = new DoubleRange(0.0, 1.0, 11),
                    FinalTissueRegionIndex = 2,
                    NA                     = 0.3
                },
            };

            input = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                tissue,
                detectorsNA0p3);
            _outputNA0p3 = new MonteCarloSimulation(input).Run();

            var detectorsNoNASpecified = new List <IDetectorInput>
            {
                new RDiffuseDetectorInput()
                {
                },
                new ROfAngleDetectorInput()
                {
                    Angle = new DoubleRange(Math.PI / 2, Math.PI, 2)
                },
                new ROfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11)
                },
                new ROfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Angle = new DoubleRange(Math.PI / 2, Math.PI, 2)
                },
                new ROfRhoAndTimeDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Time = new DoubleRange(0.0, 1.0, 11)
                },
                new ROfRhoAndOmegaDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Omega = new DoubleRange(0.05, 1.0, 20)
                },
                new ROfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11)
                },
                new ROfXAndYAndTimeDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), Time = new DoubleRange(0, 1, 11), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfXAndYAndMaxDepthDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11), MaxDepth = new DoubleRange(0, 10.0, 11), FinalTissueRegionIndex = 0, NA = 0.3
                },
                new ROfFxDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 51)
                },
                new ROfFxAndTimeDetectorInput()
                {
                    Fx = new DoubleRange(0.0, 0.5, 5), Time = new DoubleRange(0.0, 1.0, 11)
                },
                new RSpecularDetectorInput()
                {
                },
                new TDiffuseDetectorInput()
                {
                },
                new TOfAngleDetectorInput()
                {
                    Angle = new DoubleRange(0.0, Math.PI / 2, 2)
                },
                new TOfRhoAndAngleDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11), Angle = new DoubleRange(0.0, Math.PI / 2, 2)
                },
                new TOfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, 10.0, 11)
                },
                new TOfXAndYDetectorInput()
                {
                    X = new DoubleRange(-10.0, 10.0, 11), Y = new DoubleRange(-10.0, 10.0, 11)
                },

                new RadianceOfRhoAtZDetectorInput()
                {
                    ZDepth = _dosimetryDepth, Rho = new DoubleRange(0.0, 10.0, 11)
                },

                new ReflectedMTOfRhoAndSubregionHistDetectorInput()
                {
                    Rho              = new DoubleRange(0.0, 10.0, 11),
                    MTBins           = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins = new DoubleRange(0.0, 1.0, 11),
                },
                new ReflectedMTOfXAndYAndSubregionHistDetectorInput()
                {
                    X                = new DoubleRange(-10.0, 10.0, 11),
                    Y                = new DoubleRange(-10.0, 10.0, 11),
                    MTBins           = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins = new DoubleRange(0.0, 1.0, 11),
                },
                new TransmittedMTOfRhoAndSubregionHistDetectorInput()
                {
                    Rho              = new DoubleRange(0.0, 10.0, 11),
                    MTBins           = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins = new DoubleRange(0.0, 1.0, 11),
                },
                new TransmittedMTOfXAndYAndSubregionHistDetectorInput()
                {
                    X                = new DoubleRange(-10.0, 10.0, 11),
                    Y                = new DoubleRange(-10.0, 10.0, 11),
                    MTBins           = new DoubleRange(0.0, 500.0, 5),
                    FractionalMTBins = new DoubleRange(0.0, 1.0, 11),
                },
            };

            input = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                tissue,
                detectorsNoNASpecified);
            _outputNoNASpecified = new MonteCarloSimulation(input).Run();
        }
Esempio n. 25
0
        public SimulationRenderHelper(Panel gamePanel, RenderZoneOptions renderZoneOptions, SimulationOptions options)
        {
            if (gamePanel == null)
            {
                throw new ArgumentNullException(nameof(gamePanel));
            }
            gamePanel.Controls.Clear();

            SimulationSession = new SimulationSession(options);

            _zoneSelectionPanel.Width = 160;
            _zoneSelectionPanel.Dock  = DockStyle.Left;

            _viewportPanel.Dock       = DockStyle.Fill;
            _viewportPanel.AutoScroll = true;

            gamePanel.Controls.Add(_viewportPanel);
            gamePanel.Controls.Add(_zoneSelectionPanel);

            _zoneSelectionPanel.BringToFront();
            _viewportPanel.BringToFront();

            if (renderZoneOptions == null)
            {
                throw new ArgumentNullException(nameof(renderZoneOptions));
            }

            _canvasPanel = new Panel
            {
                BackColor = EmptyZoneConsumption.DefaultColor,
                Size      = _tilesetAccessor.GetAreaSize(SimulationSession.Area),
                Dock      = DockStyle.None
            };

            _viewportPanel.Controls.Add(_canvasPanel);

            _zoneSelectionPanelBehaviour = new ZoneSelectionPanelCreator(
                area: SimulationSession.Area,
                targetPanel: _zoneSelectionPanel
                );

            MouseEventHandler eventHandler = (sender, e) =>
            {
                var point = _canvasPanel.PointToClient(Cursor.Position);
                var zone  = GetZoneStateFor(point);

                var zoneConsumption = (e.Button == MouseButtons.Right)
                    ? new EmptyZoneConsumption()
                    : _zoneSelectionPanelBehaviour.CreateNewCurrentZoneConsumption();

                var result = SimulationSession.ConsumeZoneAt(zone, zoneConsumption);
                if (result == null)
                {
                    throw new InvalidOperationException();
                }
            };

            _canvasPanel.MouseDown += eventHandler;
            _canvasPanel.MouseMove += (sender, e) =>
            {
                if (e.Button != MouseButtons.None && _zoneSelectionPanelBehaviour.IsCurrentlyNetworkZoning)
                {
                    eventHandler(sender, e);
                }
            };

            _zoneRenderInfos = SimulationSession.Area
                               .EnumerateZoneInfos()
                               .ToDictionary(x => x,
                                             zoneRenderInfo =>
                                             new ZoneRenderInfo(
                                                 zoneInfo: zoneRenderInfo,
                                                 createRectangle: zonePoint => new Rectangle(
                                                     x: zonePoint.Point.X * _tilesetAccessor.TileWidthAndSizeInPixels,
                                                     y: zonePoint.Point.Y * _tilesetAccessor.TileWidthAndSizeInPixels,
                                                     width: _tilesetAccessor.TileWidthAndSizeInPixels,
                                                     height: _tilesetAccessor.TileWidthAndSizeInPixels
                                                     ),
                                                 tilesetAccessor: _tilesetAccessor,
                                                 renderZoneOptions: renderZoneOptions
                                                 ));

            _graphicsManager = CreateGraphicsManagerWrapperWithFactory(renderZoneOptions.SelectedGraphicsManager.Factory);
        }
Esempio n. 26
0
        //public void Map(UIElementCollection uIElementCollection, SimulationOptions simOptions)
        //{
        //    Dictionary<ProcedureWPF, Procedure> procedures = new Dictionary<ProcedureWPF, Procedure>();
        //    Dictionary<ResourceWPF, Resource> resources = new Dictionary<ResourceWPF, Resource>();

        //    var resultProcedures = new List<Procedure>();

        //    foreach (var element in uIElementCollection)
        //    {
        //        //смотрим все соединения процедур
        //        if (element is ProcConnectionWPF)
        //        {
        //            var connection = (element as ProcConnectionWPF);

        //            //TODO типа можно здесь всё обработать
        //            // Комментарий от 28.05.19: facepalm
        //            if (connection.StartBlock is StartBlockWPF && connection.EndBlock is EndBlockWPF)
        //            {
        //                throw new Exception("Нельзя просто соединить начало с концом!");
        //            }

        //            //обработка стартового блока
        //            if (connection.StartBlock is StartBlockWPF)
        //            {
        //                Procedure block;

        //                //если в первый раз встерчаем блок
        //                if (!(procedures.ContainsKey(connection.EndBlock as ProcedureWPF)))
        //                {
        //                    //первого нет, второй значимый
        //                    block = (connection.EndBlock as ProcedureWPF).BlockModel;

        //                    //добавляем его в список
        //                    procedures.Add(connection.EndBlock as ProcedureWPF, block);

        //                    //добавляем его в список всех блоков процесса
        //                    resultProcedures.Add(block);
        //                }
        //                //иначе просто берём из базы
        //                else
        //                    block = procedures[connection.EndBlock as ProcedureWPF];

        //                //process.StartBlock = block;
        //                //соединение будет когда-то потом
        //            }
        //            //обработка конечного блока
        //            else if (connection.EndBlock is EndBlockWPF)
        //            {
        //                Procedure block = null;

        //                //если в первый раз такое встречаем
        //                if (!(procedures.ContainsKey(connection.StartBlock as ProcedureWPF)))
        //                {
        //                    block = (connection.StartBlock as ProcedureWPF).BlockModel;
        //                    procedures.Add(connection.StartBlock as ProcedureWPF, block);
        //                    resultProcedures.Add(block);
        //                }
        //                else
        //                {
        //                    block = procedures[connection.StartBlock as ProcedureWPF];
        //                }
        //                //process.EndBlock = block;
        //                //соединение будет когда-то потом
        //            }
        //            //обработка всех остальных блоков
        //            else
        //            {
        //                Procedure block = null;

        //                //если в первый раз такое встречаем
        //                if (!(procedures.ContainsKey(connection.StartBlock as ProcedureWPF)))
        //                {
        //                    block = (connection.StartBlock as ProcedureWPF).BlockModel;
        //                    procedures.Add(connection.StartBlock as ProcedureWPF, block);
        //                    resultProcedures.Add(block);
        //                }
        //                //если в первый раз такое встречаем
        //                if (!(procedures.ContainsKey(connection.EndBlock as ProcedureWPF)))
        //                {
        //                    block = (connection.EndBlock as ProcedureWPF).BlockModel;
        //                    procedures.Add(connection.EndBlock as ProcedureWPF, block);
        //                    resultProcedures.Add(block);
        //                }


        //                //к счастью там только один вход и выход
        //                //process.Connections.Connect(procedures[connection.StartBlock as ProcedureWPF], connection.StartPort,
        //                //    procedures[connection.EndBlock as ProcedureWPF], connection.EndPort);

        //            }
        //        }
        //        //сотрим соединения ресурсов
        //        else if (element is ResConnectionWPF)
        //        {

        //            var connection = (element as ResConnectionWPF);
        //            ProcedureWPF procedure;
        //            ResourceWPF resourceWPF;
        //            if (connection.StartBlock is ProcedureWPF)
        //            {
        //                procedure = connection.StartBlock as ProcedureWPF;
        //                resourceWPF = connection.EndBlock as ResourceWPF;
        //            }
        //            else
        //            {
        //                procedure = connection.EndBlock as ProcedureWPF;
        //                resourceWPF = connection.StartBlock as ResourceWPF;
        //            }
        //            Procedure block = null;

        //            //если в первый раз такое встречаем
        //            if (!(procedures.ContainsKey(procedure)))
        //            {
        //                block = procedure.BlockModel;
        //                procedures.Add(procedure, block);
        //                resultProcedures.Add(block);
        //            }
        //            else
        //                block = procedures[procedure];

        //            Resource resource = null; ;
        //            //если в первый раз такое встречаем
        //            if (!(resources.ContainsKey(resourceWPF)))
        //            {
        //                resource = this.ConvertWpfResourceToModel(resourceWPF);
        //                resources.Add(resourceWPF, resource);
        //                //process.Resources.Add(resource); // WTF???
        //            }
        //            else
        //                resource = resources[resourceWPF];

        //            if (block is Procedure)
        //                (block as Procedure).Resources.Add(resource);
        //            else
        //                throw new ArgumentException("Ресурсы поддерживает только блоки типа Procedure");
        //        }
        //    }

        //    simOptions.Procedures = resultProcedures;
        //}

        private void StartModeling_Executed(object sender, RoutedEventArgs e)
        {
            try
            {
                var tabs     = testTabControl.Items.OfType <TabItem>().ToList();
                var drawArea = tabs[0].Content as DrawArea;

                var proceduresConnections = drawArea.Children.OfType <ProcConnectionWPF>()
                                            .Where(x => x.startPoint == null || x.startPoint.ConnectType == ConnectPointWPF_Type.outPut)
                                            .ToList();
                var backLinksConnections = drawArea.Children.OfType <ProcConnectionWPF>()
                                           .Where(x => x.startPoint != null && x.startPoint.ConnectType == ConnectPointWPF_Type.backOutput)
                                           .ToList();
                var resourcesConnections = drawArea.Children.OfType <ResConnectionWPF>().ToList();
                var procedures           = drawArea.Children.OfType <ProcedureWPF>().ToList();
                var resources            = drawArea.Children.OfType <ResourceWPF>().ToList();

                var resourcesDictionary = resourcesConnections
                                          .Select(x => new
                {
                    Connection = x,
                    Resource   = x.StartBlock is ResourceWPF ? x.StartBlock as ResourceWPF : x.EndBlock as ResourceWPF,
                    Procedure  = x.StartBlock is ProcedureWPF ? x.StartBlock as ProcedureWPF : x.EndBlock as ProcedureWPF
                })
                                          .GroupBy(x => x.Procedure)
                                          .ToDictionary(x => x.Key.BlockModel, x => x.Select(y => y.Resource).ToList());

                var proceduresDictionary = proceduresConnections
                                           .Where(x => x.StartBlock as ProcedureWPF != null && x.EndBlock as ProcedureWPF != null)
                                           .Select(x => new
                {
                    StartProcedure = x.StartBlock as ProcedureWPF,
                    EndProcedure   = x.EndBlock as ProcedureWPF
                })
                                           .Select(x => new
                {
                    Connection = new Connection()
                    {
                        Begin = x.StartProcedure.BlockModel,
                        End   = x.EndProcedure.BlockModel
                    },
                    x.StartProcedure,
                    x.EndProcedure
                })
                                           .ToList();

                var proceduresBackLinkDictionary = backLinksConnections
                                                   .Select(x => new
                {
                    StartProcedure = x.StartBlock as ProcedureWPF,
                    EndProcedure   = x.EndBlock as ProcedureWPF
                })
                                                   .Select(x => new
                {
                    Connection = new Connection()
                    {
                        Begin = x.StartProcedure.BlockModel,
                        End   = x.EndProcedure.BlockModel
                    },
                    x.StartProcedure,
                    x.EndProcedure
                })
                                                   .ToList();

                var allProcedures = new List <Procedure>();
                allProcedures.AddRange(proceduresDictionary.SelectMany(x => new[] { x.Connection.Begin, x.Connection.End }).Cast <Procedure>());
                allProcedures.AddRange(proceduresBackLinkDictionary.SelectMany(x => new[] { x.Connection.Begin, x.Connection.End }).Cast <Procedure>());
                allProcedures.AddRange(resourcesDictionary.Keys.Select(x => x));

                var totalProcedures = allProcedures.Distinct();
                foreach (var procedure in totalProcedures)
                {
                    procedure.Resources = resourcesDictionary.ContainsKey(procedure) ? resourcesDictionary[procedure].Select(res => res.ResourceModel).ToList() : new List <Resource>();
                    procedure.Inputs    = proceduresDictionary.Where(x => x.EndProcedure.BlockModel == procedure).Select(x => x.Connection).ToList();
                    procedure.Outputs   = proceduresDictionary.Where(x => x.StartProcedure.BlockModel == procedure).Select(x => x.Connection).ToList();
                    procedure.BackLinks = proceduresBackLinkDictionary.Where(x => x.StartProcedure.BlockModel == procedure).Select(x => x.Connection).ToList();
                }

                var options = new SimulationOptions()
                {
                    Procedures = totalProcedures
                                 .Cast <BaseProcedure>()
                                 .ToList()
                };

                var simulator = new Simulator();

                try
                {
                    var results = simulator.Simulate(options);

                    var    successString = results.IsSuccess ? "успешно" : "неудачно";
                    string resultMsg     = $"Моделирование завершено {successString}";

                    if (results.IsSuccess)
                    {
                        resultMsg += $"{Environment.NewLine}Время моделирования: {results.ModelingTime}";

                        foreach (var log in results.Logs.Where(log => !string.IsNullOrEmpty(log.Procedure.Name)))
                        {
                            resultMsg += $"{Environment.NewLine}===" +
                                         $"{Environment.NewLine}Процедура: {log.Procedure?.Name}" +
                                         $"{Environment.NewLine}Начало: {log.SimulationResult.StartTime}" +
                                         $"{Environment.NewLine}Продолжительность: {log.SimulationResult.Duration}" +
                                         $"{Environment.NewLine}Конец: {log.SimulationResult.EndTime}" +
                                         $"{Environment.NewLine}Входное качество: {(int)(log.SimulationResult.StartQuality * 100.0)}" +
                                         $"{Environment.NewLine}Выходное качество: {(int)(log.SimulationResult.ResultQuality * 100.0)}";
                        }

                        var resultsWindow = new ResultWindow(
                            results.ModelingTime.Value,
                            resources.Select(x => x.ResourceModel.Cost).Sum(),
                            results.Logs.Where(log => !string.IsNullOrEmpty(log.Procedure.Name)).ToArray()
                            );
                        resultsWindow.Show();
                    }
                    else
                    {
                        throw new Exception("Моделирование завершено неудачно");
                    }

                    listBox1.Items.Clear();
                }
                catch (Exception err)
                {
                    MessageBox.Show(err.Message);
                }
            }
            catch (Exception ex)
            {
                MessageBox.Show(ex.Message);
            }
            finally
            {
                foreach (var process in processes)
                {
                    //process = new SimulationOptions();
                }
            }
        }
Esempio n. 27
0
        public void execute_Monte_Carlo()
        {
            // instantiate common classes
            _simulationOptions = new SimulationOptions(
                0,
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Discrete,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>(),
                false, // track statistics
                0.0,   // RR threshold -> 0 = no RR performed
                0);
            _source = new DirectionalPointSourceInput(
                new Position(0.0, 0.0, 0.0),
                new Direction(0.0, 0.0, 1.0),
                1);

            _tissue =
                new MultiLayerWithSurfaceFiberTissueInput(
                    new SurfaceFiberTissueRegion(
                        new Position(0, 0, 0),
                        _detectorRadius, // needs to match SurfaceFiberDetectorInput
                        new OpticalProperties(0.01, 1.0, 0.8, 1.4)
                        ),
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(
                    new DoubleRange(0.0, 100.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
                new LayerTissueRegion(
                    new DoubleRange(100.0, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    );
            // tissue specification to verify MultiLayerWithSurfaceFiberTissue
            // increases reflectance.  If use this tissue need to change FinalTissueRegion
            // for ALL detectors to 0
            //new MultiLayerTissueInput(
            //    new ITissueRegion[]
            //    {
            //        new LayerTissueRegion(
            //            new DoubleRange(double.NegativeInfinity, 0.0),
            //            new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
            //        new LayerTissueRegion(
            //            new DoubleRange(0.0, 100.0),
            //            new OpticalProperties(0.01, 1.0, 0.8, 1.4)),
            //        new LayerTissueRegion(
            //            new DoubleRange(100.0, double.PositiveInfinity),
            //            new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            //    }
            //);

            _detectorOpen = new List <IDetectorInput>
            {
                new SurfaceFiberDetectorInput()
                {
                    Center            = new Position(0, 0, 0),
                    Radius            = _detectorRadius,
                    TallySecondMoment = true,
                    N  = 1.4,
                    NA = 1.4,
                    FinalTissueRegionIndex = 3
                },
                new ROfRhoDetectorInput() // 1mm wide ring to match fiber and 2 because beyond goes into 2nd
                {
                    Rho = new DoubleRange(0.0, 2 * _detectorRadius, 3),
                    // since tissue w fiber specified -> photon will be in 3 upon exit
                    FinalTissueRegionIndex = 3,
                    NA = 1.4,
                    TallySecondMoment = true
                },
            };
            _detectorNA = new List <IDetectorInput>
            {
                new SurfaceFiberDetectorInput()
                {
                    Center            = new Position(0, 0, 0),
                    Radius            = _detectorRadius,
                    TallySecondMoment = true,
                    N = 1.4,
                    FinalTissueRegionIndex = 3,
                    NA = 0.39
                },
                new ROfRhoDetectorInput() // ring to match fiber detector
                {
                    Rho = new DoubleRange(0.0, 2 * _detectorRadius, 3),
                    // since tissue w fiber specified -> photon will be in 3 upon exit
                    FinalTissueRegionIndex = 3,
                    NA = 0.39,
                    TallySecondMoment = true
                },
            };
            _detectorNAOffCenter = new List <IDetectorInput>
            {
                new SurfaceFiberDetectorInput()
                {
                    Center            = new Position(_detectorRadius, 0, 0), // diam = [0, 2*radius]
                    Radius            = _detectorRadius,
                    TallySecondMoment = true,
                    N = 1.4,
                    FinalTissueRegionIndex = 3,
                    NA = 1.4
                },
                new ROfRhoDetectorInput() // ring to match fiber detector
                {
                    // place 1st rho bin center at _detectorRadius with width = 2*radius
                    Rho = new DoubleRange(_detectorRadius / 2, 2 * _detectorRadius + _detectorRadius / 2, 3),
                    // since tissue w fiber specified -> photon will be in 3 upon exit
                    FinalTissueRegionIndex = 3,
                    NA = 1.4,
                    TallySecondMoment = true
                },
            };
            var _inputOpen = new SimulationInput(
                100,
                "",
                _simulationOptions,
                _source,
                _tissue,
                _detectorOpen);

            _outputOpen = new MonteCarloSimulation(_inputOpen).Run();

            var _inputNA = new SimulationInput(
                100,
                "",
                _simulationOptions,
                _source,
                _tissue,
                _detectorNA);

            _outputNA = new MonteCarloSimulation(_inputNA).Run();

            var _inputNAOffCenter = new SimulationInput(
                100,
                "",
                _simulationOptions,
                _source,
                _tissue,
                _detectorNAOffCenter);

            _outputNAOffCenter = new MonteCarloSimulation(_inputNAOffCenter).Run();
        }
        public void execute_Monte_Carlo()
        {
            // delete previously generated files
            clear_folders_and_files();

            var cylinderRadius  = 5.0;
            var tissueThickness = 2.0;

            // instantiate common classes
            var simulationOptions = new SimulationOptions(
                0, // reproducible
                RandomNumberGeneratorType.MersenneTwister,
                AbsorptionWeightingType.Discrete,
                PhaseFunctionType.HenyeyGreenstein,
                new List <DatabaseType>()
            {
            },         // databases to be written
                false, // track statistics
                0.0,   // RR threshold -> 0 = no RR performed
                0);
            var source = new CustomCircularSourceInput(
                cylinderRadius - 0.01,          // outer radius
                0.0,                            // inner radius
                new FlatSourceProfile(),
                new DoubleRange(0.0, 0.0),      // polar angle emission range
                new DoubleRange(0.0, 0.0),      // azimuthal angle emission range
                new Direction(0, 0, 1),         // normal to tissue
                new Position(0, 0, 0),          // center of beam on surface
                new PolarAzimuthalAngles(0, 0), // no beam rotation
                0);                             // 0=start in air, 1=start in tissue
            // debug with point source
            //var source = new DirectionalPointSourceInput(
            //    new Position(0.0, 0.0, 0.0),
            //    new Direction(0.0, 0.0, 1.0),
            //    //new Direction(1/Math.Sqrt(2), 0.0, 1/Math.Sqrt(2)),// debug with 45 degree direction and g=1.0
            //    1); // start inside tissue
            var detectors =
                new List <IDetectorInput>
            {
                new RSpecularDetectorInput(),
                new RDiffuseDetectorInput(), new ROfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, cylinderRadius, 11)
                },
                new TDiffuseDetectorInput(),
                new TOfRhoDetectorInput()
                {
                    Rho = new DoubleRange(0.0, cylinderRadius, 11)
                },
                new AOfRhoAndZDetectorInput()
                {
                    Rho = new DoubleRange(0.0, cylinderRadius, 11),
                    Z   = new DoubleRange(0, tissueThickness, 11)
                },
                new ATotalDetectorInput(),
                new ATotalBoundingVolumeDetectorInput()
            };

            _inputBoundedTissue = new SimulationInput(
                100,
                "",
                simulationOptions,
                source,
                new BoundingCylinderTissueInput(
                    new CaplessCylinderTissueRegion(
                        new Position(0, 0, tissueThickness / 2),
                        cylinderRadius,
                        tissueThickness,
                        new OpticalProperties(0.0, 1e-10, 1.0, 1.4)
                        ),
                    new ITissueRegion[]
            {
                new LayerTissueRegion(
                    new DoubleRange(double.NegativeInfinity, 0.0),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0)),
                new LayerTissueRegion(                           // note two layer and one layer give same results Yay!
                    new DoubleRange(0.0, 1.0),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)), // debug g=1.0
                new LayerTissueRegion(
                    new DoubleRange(1.0, tissueThickness),
                    new OpticalProperties(0.01, 1.0, 0.8, 1.4)),         // debug g=1.0
                new LayerTissueRegion(
                    new DoubleRange(tissueThickness, double.PositiveInfinity),
                    new OpticalProperties(0.0, 1e-10, 1.0, 1.0))
            }
                    ),
                detectors);
            _outputBoundedTissue = new MonteCarloSimulation(_inputBoundedTissue).Run();
        }
        public PrTabViewModel(SimulationOptions simulationOptions) : base("ІПРАЙ")
        {
            var logger = Logger.New(typeof(PrTabViewModel));

            using (logger.LogPerf("Init"))
            {
                m_SimulationOptions = simulationOptions;

                m_Simulator = new PrSimulator(m_SimulationOptions);

                m_VisualizationProvider = GridDataVisualizationProvider.Table();

                m_Player = new Player(() =>
                {
                    using (logger.LogPerf("Step simulation"))
                    {
                        m_Simulator.SimulateSteps();
                    }
                }, () =>
                {
                    using (logger.LogPerf("Auto simulation"))
                    {
                        m_Simulator.SimulateSteps(5);
                    }
                }, () =>
                {
                    UpdateVisualization.Execute().Subscribe();
                }, TimeSpan.FromMilliseconds(10), DispatcherPriority.ContextIdle);

                UpdateVisualization = ReactiveCommand.Create(() =>
                {
                    using (logger.LogPerf("Visualization"))
                    {
                        Visualization  = m_VisualizationProvider.ProvideVisualization(m_Simulator.GetData());
                        SimulationInfo = m_Simulator.SimulationInfo;
                    }
                });

                var notRunningOrPlaying = m_Player.WhenAny(x => x.RunningOrPlaying, r => !r.Value);

                var notSingleStepRunning = m_Player.WhenAny(x => x.SingleStepRunning, r => !r.Value);

                Step = ReactiveCommand.Create(() =>
                {
                    m_Player.StepOnce();
                }, notRunningOrPlaying);

                PlayPause = new ReactivePlayPauseCommand("Програти", "Пауза", notSingleStepRunning);

                PlayPause.Subscribe(p =>
                {
                    if (p)
                    {
                        m_Player.Start();
                    }
                    else
                    {
                        m_Player.Stop();
                    }
                });

                Restart = ReactiveCommand.Create(() =>
                {
                    m_Simulator.Reset();
                }, notRunningOrPlaying);

                Restart.InvokeCommand(UpdateVisualization);

                VisualTypeSelector = new ReactiveSelectorCommand <string>(x => (string)x, "Table");

                VisualTypeSelector.Selected
                .Subscribe(option =>
                {
                    switch (option)
                    {
                    case "Table":
                        m_VisualizationProvider = GridDataVisualizationProvider.Table();
                        break;

                    case "2D":
                        m_VisualizationProvider = GridDataVisualizationProvider.Color();
                        break;

                    case "3D":
                        m_VisualizationProvider = GridDataVisualizationProvider.Model3D(m_SimulationOptions.Size);
                        break;
                    }
                });

                VisualTypeSelector.Selected
                .ToSignal()
                .InvokeCommand(UpdateVisualization);

                OpenSimulationOptions = ReactiveCommand.Create(() =>
                {
                    SimulationOptionsDialog dialog = new SimulationOptionsDialog(m_SimulationOptions);
                    dialog.ShowDialog();

                    if (!dialog.DialogResult.GetValueOrDefault(false))
                    {
                        return;
                    }

                    m_SimulationOptions     = dialog.SimulationOptions;
                    m_Simulator             = new PrSimulator(m_SimulationOptions);
                    m_VisualizationProvider = m_VisualizationProvider.Copy(m_SimulationOptions.Size);
                }, notRunningOrPlaying);

                OpenSimulationOptions
                .InvokeCommand(UpdateVisualization);

                ExportToCsv = ReactiveCommand.Create(() =>
                {
                    SaveFileDialog saveFileDialog = new SaveFileDialog()
                    {
                        Filter = "Файл CSV (*.csv)|*.csv"
                    };
                    if (saveFileDialog.ShowDialog(Application.Current.MainWindow).GetValueOrDefault())
                    {
                        CsvUtil.ExportToFile(m_Simulator.GetData(), saveFileDialog.FileName);
                    }
                });

                Settings.SettingsChange
                .InvokeCommand(UpdateVisualization);

                Settings.SettingsChange
                .Subscribe(_ =>
                {
                    Pallete = Settings.Current.VisualizationOptions.Pallete;
                });

                Pallete = Settings.Current.VisualizationOptions.Pallete;
            }
        }
Esempio n. 30
0
			public void CopyTo(SimulationOptions other)
			{
				other.NumberOfParticles = this.m_NumberOfParticles;
				other.ParticleScale = this.m_ParticleScale;
				other.BerendsenThermostatCoupling = this.m_BerendsenThermostatCoupling;
				other.EquilibriumTemperature = this.m_EquilibriumTemperature;
				other.GradientScaleFactor = this.m_GradientScaleFactor;
				other.PotentialEnergy = this.m_PotentialEnergy;

				for (int i = 0; i < ParticleTypes.Count; i++)
				{
					ParticleTypes[i].CopyTo(other.ParticleTypes[i]); 
				}
			}
Esempio n. 31
0
    public void LoadDefaults()
    {
        mode           = "dataset";
        loggingEnabled = false;

        simulationOptions = new SimulationOptions()
        {
            videoPort              = 44209,
            webAPIPort             = 44210,
            videoQuality           = 60,
            selectedWaterContainer = "waterpool1",
            fixedDeltaTime         = 0.001f,
            depthMapQuality        = 90,
            depthMapScale          = 0.1f,
            videoFeedQuality       = 90,
            videoFeedScale         = 0.5f
        };

        datasetOptions = new DatasetOptions()
        {
            selectedWaterContainer       = "waterpool1",
            classDetectedFrameNum        = 11,
            classMultipleFrameNum        = 11,
            classBlankFrameNum           = 11,
            classObstacleFrameNum        = 11,
            minVisibleMultipleObjectsNum = 2,
            minCameraDistanceToObject    = 0,
            maxCameraDistanceToObject    = 30,
            minObjectFill = .01f,
            minObjectColorPercentVisible = 0.15f,
            checkFogVisibility           = true,
            percentClosest                = 0.05f,
            closestMaxDistanceOffset      = 2f,
            objectFillOffset              = .01f,
            overrideDataset               = true,
            datasetDirPath                = "dataset",
            cameraLookAtObjectPitchOffset = 30,
            cameraLookAtObjectYawOffset   = 30,
            cameraLookAtObjectRollOffset  = 30,
            cameraLookRandomlyPitchOffset = 45,
            cameraLookRandomlyRollOffset  = 45,
            testPointsNum = 1000
        };

        datasetOptions.graphicsOptions = new GraphicsOptions()
        {
            fogEnabled          = true,
            randomizeFogDensity = true,
            fogDensity          = 0.15f,
            fogColorRandomized  = true,
            fogColor            = new List <float>()
            {
                0f, 0.64f, 1f
            },
            cameraBackgroundColor = new List <float>()
            {
                0f, 0.64f, 1f
            },
            bloomIntensity            = 1.89f,
            ambientOcclusionIntensity = 0.26f,
            mixerRedOutRedIn          = 62,
            mixerGreenOutGreenIn      = 100,
            mixerBlueOutBlueIn        = 100,
            grainIntesity             = 0.3f,
            randomizeLightIntesity    = true,
            lightIntesity             = 1f,
            ambientLightColor         = new List <float>()
            {
                0f, 0.64f, 1f
            },
            ambientLightIntesity = 0.1f,
            cameraFocalLength    = 2.550718f,
            cameraSensorSize     = new List <float>()
            {
                4.8f, 3.6f
            }
        };

        datasetOptions.debugOptions = new DatasetOptions.DebugOptions()
        {
            drawDetectionRect    = true,
            drawPostProcessDebug = false,
            disableScreenshot    = false,
            logDetection         = true
        };

        //TODO
    }