Esempio n. 1
0
 /// <summary>Compute dot product between two vectors.</summary>
 public static double Dot(SimpleMatrix vector1, SimpleMatrix vector2)
 {
     if (vector1.NumRows() == 1)
     {
         // vector1: row vector, assume that vector2 is a row vector too
         return(vector1.Mult(vector2.Transpose()).Get(0));
     }
     else
     {
         if (vector1.NumCols() == 1)
         {
             // vector1: col vector, assume that vector2 is also a column vector.
             return(vector1.Transpose().Mult(vector2).Get(0));
         }
         else
         {
             throw new AssertionError("Error in neural.Utils.dot: vector1 is a matrix " + vector1.NumRows() + " x " + vector1.NumCols());
         }
     }
 }
        /// <summary>
        /// Returns a column vector where each entry is the nth bilinear
        /// product of the nth slices of the two tensors.
        /// </summary>
        public virtual SimpleMatrix BilinearProducts(SimpleMatrix @in)
        {
            if (@in.NumCols() != 1)
            {
                throw new AssertionError("Expected a column vector");
            }
            if (@in.NumRows() != numCols)
            {
                throw new AssertionError("Number of rows in the input does not match number of columns in tensor");
            }
            if (numRows != numCols)
            {
                throw new AssertionError("Can only perform this operation on a SimpleTensor with square slices");
            }
            SimpleMatrix inT  = @in.Transpose();
            SimpleMatrix @out = new SimpleMatrix(numSlices, 1);

            for (int slice = 0; slice < numSlices; ++slice)
            {
                double result = inT.Mult(slices[slice]).Mult(@in).Get(0);
                @out.Set(slice, result);
            }
            return(@out);
        }
Esempio n. 3
0
 public virtual SimpleMatrix GetAntecedentEmbedding(SimpleMatrix mentionEmbedding)
 {
     return(antecedentMatrix.Mult(mentionEmbedding));
 }
Esempio n. 4
0
 public virtual SimpleMatrix GetAnaphorEmbedding(SimpleMatrix mentionEmbedding)
 {
     return(anaphorMatrix.Mult(mentionEmbedding));
 }
Esempio n. 5
0
        public virtual double GetPairwiseScore(SimpleMatrix antecedentEmbedding, SimpleMatrix anaphorEmbedding, SimpleMatrix pairFeatures)
        {
            SimpleMatrix firstLayerOutput = NeuralUtils.ElementwiseApplyReLU(antecedentEmbedding.Plus(anaphorEmbedding).Plus(pairFeaturesMatrix.Mult(pairFeatures)).Plus(pairwiseFirstLayerBias));

            return(Score(firstLayerOutput, pairwiseModel));
        }
        /// <summary>
        /// This is the method to call for assigning labels and node vectors
        /// to the Tree.
        /// </summary>
        /// <remarks>
        /// This is the method to call for assigning labels and node vectors
        /// to the Tree.  After calling this, each of the non-leaf nodes will
        /// have the node vector and the predictions of their classes
        /// assigned to that subtree's node.  The annotations filled in are
        /// the RNNCoreAnnotations.NodeVector, Predictions, and
        /// PredictedClass.  In general, PredictedClass will be the most
        /// useful annotation except when training.
        /// </remarks>
        public virtual void ForwardPropagateTree(Tree tree)
        {
            SimpleMatrix nodeVector;
            // initialized below or Exception thrown // = null;
            SimpleMatrix classification;

            // initialized below or Exception thrown // = null;
            if (tree.IsLeaf())
            {
                // We do nothing for the leaves.  The preterminals will
                // calculate the classification for this word/tag.  In fact, the
                // recursion should not have gotten here (unless there are
                // degenerate trees of just one leaf)
                log.Info("SentimentCostAndGradient: warning: We reached leaves in forwardPropagate: " + tree);
                throw new AssertionError("We should not have reached leaves in forwardPropagate");
            }
            else
            {
                if (tree.IsPreTerminal())
                {
                    classification = model.GetUnaryClassification(tree.Label().Value());
                    string       word       = tree.Children()[0].Label().Value();
                    SimpleMatrix wordVector = model.GetWordVector(word);
                    nodeVector = NeuralUtils.ElementwiseApplyTanh(wordVector);
                }
                else
                {
                    if (tree.Children().Length == 1)
                    {
                        log.Info("SentimentCostAndGradient: warning: Non-preterminal nodes of size 1: " + tree);
                        throw new AssertionError("Non-preterminal nodes of size 1 should have already been collapsed");
                    }
                    else
                    {
                        if (tree.Children().Length == 2)
                        {
                            ForwardPropagateTree(tree.Children()[0]);
                            ForwardPropagateTree(tree.Children()[1]);
                            string       leftCategory  = tree.Children()[0].Label().Value();
                            string       rightCategory = tree.Children()[1].Label().Value();
                            SimpleMatrix W             = model.GetBinaryTransform(leftCategory, rightCategory);
                            classification = model.GetBinaryClassification(leftCategory, rightCategory);
                            SimpleMatrix leftVector     = RNNCoreAnnotations.GetNodeVector(tree.Children()[0]);
                            SimpleMatrix rightVector    = RNNCoreAnnotations.GetNodeVector(tree.Children()[1]);
                            SimpleMatrix childrenVector = NeuralUtils.ConcatenateWithBias(leftVector, rightVector);
                            if (model.op.useTensors)
                            {
                                SimpleTensor tensor    = model.GetBinaryTensor(leftCategory, rightCategory);
                                SimpleMatrix tensorIn  = NeuralUtils.Concatenate(leftVector, rightVector);
                                SimpleMatrix tensorOut = tensor.BilinearProducts(tensorIn);
                                nodeVector = NeuralUtils.ElementwiseApplyTanh(W.Mult(childrenVector).Plus(tensorOut));
                            }
                            else
                            {
                                nodeVector = NeuralUtils.ElementwiseApplyTanh(W.Mult(childrenVector));
                            }
                        }
                        else
                        {
                            log.Info("SentimentCostAndGradient: warning: Tree not correctly binarized: " + tree);
                            throw new AssertionError("Tree not correctly binarized");
                        }
                    }
                }
            }
            SimpleMatrix predictions = NeuralUtils.Softmax(classification.Mult(NeuralUtils.ConcatenateWithBias(nodeVector)));
            int          index       = GetPredictedClass(predictions);

            if (!(tree.Label() is CoreLabel))
            {
                log.Info("SentimentCostAndGradient: warning: No CoreLabels in nodes: " + tree);
                throw new AssertionError("Expected CoreLabels in the nodes");
            }
            CoreLabel label = (CoreLabel)tree.Label();

            label.Set(typeof(RNNCoreAnnotations.Predictions), predictions);
            label.Set(typeof(RNNCoreAnnotations.PredictedClass), index);
            label.Set(typeof(RNNCoreAnnotations.NodeVector), nodeVector);
        }
        private void BackpropDerivativesAndError(Tree tree, TwoDimensionalMap <string, string, SimpleMatrix> binaryTD, TwoDimensionalMap <string, string, SimpleMatrix> binaryCD, TwoDimensionalMap <string, string, SimpleTensor> binaryTensorTD, IDictionary
                                                 <string, SimpleMatrix> unaryCD, IDictionary <string, SimpleMatrix> wordVectorD, SimpleMatrix deltaUp)
        {
            if (tree.IsLeaf())
            {
                return;
            }
            SimpleMatrix currentVector = RNNCoreAnnotations.GetNodeVector(tree);
            string       category      = tree.Label().Value();

            category = model.BasicCategory(category);
            // Build a vector that looks like 0,0,1,0,0 with an indicator for the correct class
            SimpleMatrix goldLabel = new SimpleMatrix(model.numClasses, 1);
            int          goldClass = RNNCoreAnnotations.GetGoldClass(tree);

            if (goldClass >= 0)
            {
                goldLabel.Set(goldClass, 1.0);
            }
            double       nodeWeight  = model.op.trainOptions.GetClassWeight(goldClass);
            SimpleMatrix predictions = RNNCoreAnnotations.GetPredictions(tree);
            // If this is an unlabeled class, set deltaClass to 0.  We could
            // make this more efficient by eliminating various of the below
            // calculations, but this would be the easiest way to handle the
            // unlabeled class
            SimpleMatrix deltaClass = goldClass >= 0 ? predictions.Minus(goldLabel).Scale(nodeWeight) : new SimpleMatrix(predictions.NumRows(), predictions.NumCols());
            SimpleMatrix localCD    = deltaClass.Mult(NeuralUtils.ConcatenateWithBias(currentVector).Transpose());
            double       error      = -(NeuralUtils.ElementwiseApplyLog(predictions).ElementMult(goldLabel).ElementSum());

            error = error * nodeWeight;
            RNNCoreAnnotations.SetPredictionError(tree, error);
            if (tree.IsPreTerminal())
            {
                // below us is a word vector
                unaryCD[category] = unaryCD[category].Plus(localCD);
                string word = tree.Children()[0].Label().Value();
                word = model.GetVocabWord(word);
                //SimpleMatrix currentVectorDerivative = NeuralUtils.elementwiseApplyTanhDerivative(currentVector);
                //SimpleMatrix deltaFromClass = model.getUnaryClassification(category).transpose().mult(deltaClass);
                //SimpleMatrix deltaFull = deltaFromClass.extractMatrix(0, model.op.numHid, 0, 1).plus(deltaUp);
                //SimpleMatrix wordDerivative = deltaFull.elementMult(currentVectorDerivative);
                //wordVectorD.put(word, wordVectorD.get(word).plus(wordDerivative));
                SimpleMatrix currentVectorDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(currentVector);
                SimpleMatrix deltaFromClass          = model.GetUnaryClassification(category).Transpose().Mult(deltaClass);
                deltaFromClass = deltaFromClass.ExtractMatrix(0, model.op.numHid, 0, 1).ElementMult(currentVectorDerivative);
                SimpleMatrix deltaFull      = deltaFromClass.Plus(deltaUp);
                SimpleMatrix oldWordVectorD = wordVectorD[word];
                if (oldWordVectorD == null)
                {
                    wordVectorD[word] = deltaFull;
                }
                else
                {
                    wordVectorD[word] = oldWordVectorD.Plus(deltaFull);
                }
            }
            else
            {
                // Otherwise, this must be a binary node
                string leftCategory  = model.BasicCategory(tree.Children()[0].Label().Value());
                string rightCategory = model.BasicCategory(tree.Children()[1].Label().Value());
                if (model.op.combineClassification)
                {
                    unaryCD[string.Empty] = unaryCD[string.Empty].Plus(localCD);
                }
                else
                {
                    binaryCD.Put(leftCategory, rightCategory, binaryCD.Get(leftCategory, rightCategory).Plus(localCD));
                }
                SimpleMatrix currentVectorDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(currentVector);
                SimpleMatrix deltaFromClass          = model.GetBinaryClassification(leftCategory, rightCategory).Transpose().Mult(deltaClass);
                deltaFromClass = deltaFromClass.ExtractMatrix(0, model.op.numHid, 0, 1).ElementMult(currentVectorDerivative);
                SimpleMatrix deltaFull      = deltaFromClass.Plus(deltaUp);
                SimpleMatrix leftVector     = RNNCoreAnnotations.GetNodeVector(tree.Children()[0]);
                SimpleMatrix rightVector    = RNNCoreAnnotations.GetNodeVector(tree.Children()[1]);
                SimpleMatrix childrenVector = NeuralUtils.ConcatenateWithBias(leftVector, rightVector);
                SimpleMatrix W_df           = deltaFull.Mult(childrenVector.Transpose());
                binaryTD.Put(leftCategory, rightCategory, binaryTD.Get(leftCategory, rightCategory).Plus(W_df));
                SimpleMatrix deltaDown;
                if (model.op.useTensors)
                {
                    SimpleTensor Wt_df = GetTensorGradient(deltaFull, leftVector, rightVector);
                    binaryTensorTD.Put(leftCategory, rightCategory, binaryTensorTD.Get(leftCategory, rightCategory).Plus(Wt_df));
                    deltaDown = ComputeTensorDeltaDown(deltaFull, leftVector, rightVector, model.GetBinaryTransform(leftCategory, rightCategory), model.GetBinaryTensor(leftCategory, rightCategory));
                }
                else
                {
                    deltaDown = model.GetBinaryTransform(leftCategory, rightCategory).Transpose().Mult(deltaFull);
                }
                SimpleMatrix leftDerivative  = NeuralUtils.ElementwiseApplyTanhDerivative(leftVector);
                SimpleMatrix rightDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(rightVector);
                SimpleMatrix leftDeltaDown   = deltaDown.ExtractMatrix(0, deltaFull.NumRows(), 0, 1);
                SimpleMatrix rightDeltaDown  = deltaDown.ExtractMatrix(deltaFull.NumRows(), deltaFull.NumRows() * 2, 0, 1);
                BackpropDerivativesAndError(tree.Children()[0], binaryTD, binaryCD, binaryTensorTD, unaryCD, wordVectorD, leftDerivative.ElementMult(leftDeltaDown));
                BackpropDerivativesAndError(tree.Children()[1], binaryTD, binaryCD, binaryTensorTD, unaryCD, wordVectorD, rightDerivative.ElementMult(rightDeltaDown));
            }
        }
Esempio n. 8
0
        public virtual void BackpropDerivative(Tree tree, IList <string> words, IdentityHashMap <Tree, SimpleMatrix> nodeVectors, TwoDimensionalMap <string, string, SimpleMatrix> binaryW_dfs, IDictionary <string, SimpleMatrix> unaryW_dfs, TwoDimensionalMap
                                               <string, string, SimpleMatrix> binaryScoreDerivatives, IDictionary <string, SimpleMatrix> unaryScoreDerivatives, IDictionary <string, SimpleMatrix> wordVectorDerivatives, SimpleMatrix deltaUp)
        {
            if (tree.IsLeaf())
            {
                return;
            }
            if (tree.IsPreTerminal())
            {
                if (op.trainOptions.trainWordVectors)
                {
                    string word = tree.Children()[0].Label().Value();
                    word = dvModel.GetVocabWord(word);
                    //        SimpleMatrix currentVector = nodeVectors.get(tree);
                    //        SimpleMatrix currentVectorDerivative = nonlinearityVectorToDerivative(currentVector);
                    //        SimpleMatrix derivative = deltaUp.elementMult(currentVectorDerivative);
                    SimpleMatrix derivative = deltaUp;
                    wordVectorDerivatives[word] = wordVectorDerivatives[word].Plus(derivative);
                }
                return;
            }
            SimpleMatrix currentVector           = nodeVectors[tree];
            SimpleMatrix currentVectorDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(currentVector);
            SimpleMatrix scoreW = dvModel.GetScoreWForNode(tree);

            currentVectorDerivative = currentVectorDerivative.ElementMult(scoreW.Transpose());
            // the delta that is used at the current nodes
            SimpleMatrix deltaCurrent = deltaUp.Plus(currentVectorDerivative);
            SimpleMatrix W            = dvModel.GetWForNode(tree);
            SimpleMatrix WTdelta      = W.Transpose().Mult(deltaCurrent);

            if (tree.Children().Length == 2)
            {
                //TODO: RS: Change to the nice "getWForNode" setup?
                string leftLabel  = dvModel.BasicCategory(tree.Children()[0].Label().Value());
                string rightLabel = dvModel.BasicCategory(tree.Children()[1].Label().Value());
                binaryScoreDerivatives.Put(leftLabel, rightLabel, binaryScoreDerivatives.Get(leftLabel, rightLabel).Plus(currentVector.Transpose()));
                SimpleMatrix leftVector     = nodeVectors[tree.Children()[0]];
                SimpleMatrix rightVector    = nodeVectors[tree.Children()[1]];
                SimpleMatrix childrenVector = NeuralUtils.ConcatenateWithBias(leftVector, rightVector);
                if (op.trainOptions.useContextWords)
                {
                    childrenVector = ConcatenateContextWords(childrenVector, tree.GetSpan(), words);
                }
                SimpleMatrix W_df = deltaCurrent.Mult(childrenVector.Transpose());
                binaryW_dfs.Put(leftLabel, rightLabel, binaryW_dfs.Get(leftLabel, rightLabel).Plus(W_df));
                // and then recurse
                SimpleMatrix leftDerivative  = NeuralUtils.ElementwiseApplyTanhDerivative(leftVector);
                SimpleMatrix rightDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(rightVector);
                SimpleMatrix leftWTDelta     = WTdelta.ExtractMatrix(0, deltaCurrent.NumRows(), 0, 1);
                SimpleMatrix rightWTDelta    = WTdelta.ExtractMatrix(deltaCurrent.NumRows(), deltaCurrent.NumRows() * 2, 0, 1);
                BackpropDerivative(tree.Children()[0], words, nodeVectors, binaryW_dfs, unaryW_dfs, binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives, leftDerivative.ElementMult(leftWTDelta));
                BackpropDerivative(tree.Children()[1], words, nodeVectors, binaryW_dfs, unaryW_dfs, binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives, rightDerivative.ElementMult(rightWTDelta));
            }
            else
            {
                if (tree.Children().Length == 1)
                {
                    string childLabel = dvModel.BasicCategory(tree.Children()[0].Label().Value());
                    unaryScoreDerivatives[childLabel] = unaryScoreDerivatives[childLabel].Plus(currentVector.Transpose());
                    SimpleMatrix childVector         = nodeVectors[tree.Children()[0]];
                    SimpleMatrix childVectorWithBias = NeuralUtils.ConcatenateWithBias(childVector);
                    if (op.trainOptions.useContextWords)
                    {
                        childVectorWithBias = ConcatenateContextWords(childVectorWithBias, tree.GetSpan(), words);
                    }
                    SimpleMatrix W_df = deltaCurrent.Mult(childVectorWithBias.Transpose());
                    // System.out.println("unary backprop derivative for " + childLabel);
                    // System.out.println("Old transform:");
                    // System.out.println(unaryW_dfs.get(childLabel));
                    // System.out.println(" Delta:");
                    // System.out.println(W_df.scale(scale));
                    unaryW_dfs[childLabel] = unaryW_dfs[childLabel].Plus(W_df);
                    // and then recurse
                    SimpleMatrix childDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(childVector);
                    //SimpleMatrix childDerivative = childVector;
                    SimpleMatrix childWTDelta = WTdelta.ExtractMatrix(0, deltaCurrent.NumRows(), 0, 1);
                    BackpropDerivative(tree.Children()[0], words, nodeVectors, binaryW_dfs, unaryW_dfs, binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives, childDerivative.ElementMult(childWTDelta));
                }
            }
        }
Esempio n. 9
0
        private void ForwardPropagateTree(Tree tree, IList <string> words, IdentityHashMap <Tree, SimpleMatrix> nodeVectors, IdentityHashMap <Tree, double> scores)
        {
            if (tree.IsLeaf())
            {
                return;
            }
            if (tree.IsPreTerminal())
            {
                Tree         wordNode   = tree.Children()[0];
                string       word       = wordNode.Label().Value();
                SimpleMatrix wordVector = dvModel.GetWordVector(word);
                wordVector        = NeuralUtils.ElementwiseApplyTanh(wordVector);
                nodeVectors[tree] = wordVector;
                return;
            }
            foreach (Tree child in tree.Children())
            {
                ForwardPropagateTree(child, words, nodeVectors, scores);
            }
            // at this point, nodeVectors contains the vectors for all of
            // the children of tree
            SimpleMatrix childVec;

            if (tree.Children().Length == 2)
            {
                childVec = NeuralUtils.ConcatenateWithBias(nodeVectors[tree.Children()[0]], nodeVectors[tree.Children()[1]]);
            }
            else
            {
                childVec = NeuralUtils.ConcatenateWithBias(nodeVectors[tree.Children()[0]]);
            }
            if (op.trainOptions.useContextWords)
            {
                childVec = ConcatenateContextWords(childVec, tree.GetSpan(), words);
            }
            SimpleMatrix W = dvModel.GetWForNode(tree);

            if (W == null)
            {
                string error = "Could not find W for tree " + tree;
                if (op.testOptions.verbose)
                {
                    log.Info(error);
                }
                throw new NoSuchParseException(error);
            }
            SimpleMatrix currentVector = W.Mult(childVec);

            currentVector     = NeuralUtils.ElementwiseApplyTanh(currentVector);
            nodeVectors[tree] = currentVector;
            SimpleMatrix scoreW = dvModel.GetScoreWForNode(tree);

            if (scoreW == null)
            {
                string error = "Could not find scoreW for tree " + tree;
                if (op.testOptions.verbose)
                {
                    log.Info(error);
                }
                throw new NoSuchParseException(error);
            }
            double score = scoreW.Dot(currentVector);

            //score = NeuralUtils.sigmoid(score);
            scores[tree] = score;
        }