private int FindClosestClusterCenter(List <Centeroid <T> > clusterCenter, DocumentVector <T> obj)
        {
            float[] similarityMeasure = new float[clusterCenter.Count()];
            for (int i = 0; i < clusterCenter.Count(); i++)
            {
                similarityMeasure[i] = SimilarityMatrics.FindCosineSimilarity(clusterCenter[i].GroupedDocument[0].VectorSpace, obj.VectorSpace);
            }
            int   index    = 0;
            float maxValue = similarityMeasure[0];

            for (int i = 0; i < similarityMeasure.Count(); i++)
            {
                if (similarityMeasure[i] > maxValue)
                {
                    maxValue = similarityMeasure[i];
                    index    = i;
                }
            }
            return(index);
        }
Esempio n. 2
0
        private int FindClosestClusterCenter(List <Centeroid <T> > clusterCenter, DocumentVector <T> docVector)
        {
            float[] similarityMeasure = new float[clusterCenter.Count];
            int     index             = 0;
            float   maxValue          = similarityMeasure[0];



            Parallel.For(0, clusterCenter.Count, i =>
            {
                if (clusterCenter[i].GroupedDocument.Count > 0)
                {
                    similarityMeasure[i] = SimilarityMatrics
                                           .FindCosineSimilarity(clusterCenter[i].GroupedDocument[0].VectorSpace, docVector.VectorSpace);
                }
                if (similarityMeasure[i] > maxValue)
                {
                    maxValue = similarityMeasure[i];
                    index    = i;
                }
            });

            return(index);
        }
Esempio n. 3
0
 public static string FindClosestDocument()
 {
     if (centroid != null)
     {
         //int countCenter = centroid.GroupedDocument.Count() - 1;
         float  max = 0;
         string doc = "";
         // Tính độ tương tự của document với các center rồi add vào mảng similarityMeasure
         foreach (var ce in centroid.GroupedDocument)
         {
             if (ce.Content != documentVector.Content)
             {
                 float current = SimilarityMatrics.FindCosineSimilarity(ce.VectorSpace, documentVector.VectorSpace);
                 if (max < current)
                 {
                     max = current;
                     doc = ce.Content;
                 }
             }
         }
         return(doc);
     }
     return(null);
 }