Esempio n. 1
0
    public void TestSeq2SeqTraining()
    {
        // Build configs for training
        Seq2SeqOptions opts = CreateOptions(trainFolderPath, validFolderPath);

        DecodingOptions decodingOptions = opts.CreateDecodingOptions();

        // Load training corpus
        var trainCorpus = new Seq2SeqCorpus(corpusFilePath: opts.TrainCorpusPath, srcLangName: opts.SrcLang, tgtLangName: opts.TgtLang, batchSize: opts.BatchSize, shuffleBlockSize: opts.ShuffleBlockSize, maxSrcSentLength: opts.MaxTrainSrcSentLength, maxTgtSentLength: opts.MaxTrainTgtSentLength, shuffleEnums: opts.ShuffleType, tooLongSequence: opts.TooLongSequence);

        // Load valid corpus
        var validCorpusList = new List <Seq2SeqCorpus>();

        if (!opts.ValidCorpusPaths.IsNullOrEmpty())
        {
            string[] validCorpusPathList = opts.ValidCorpusPaths.Split(';');
            foreach (var validCorpusPath in validCorpusPathList)
            {
                validCorpusList.Add(new Seq2SeqCorpus(validCorpusPath, opts.SrcLang, opts.TgtLang, opts.ValBatchSize, opts.ShuffleBlockSize, opts.MaxTestSrcSentLength, opts.MaxTestTgtSentLength, shuffleEnums: opts.ShuffleType, tooLongSequence: opts.TooLongSequence));
            }
        }

        // Create learning rate
        ILearningRate learningRate = new DecayLearningRate(opts.StartLearningRate, opts.WarmUpSteps, opts.WeightsUpdateCount);

        // Create optimizer
        IOptimizer optimizer = Misc.CreateOptimizer(opts);

        // Build vocabularies for training
        (var srcVocab, var tgtVocab) = trainCorpus.BuildVocabs(opts.SrcVocabSize, opts.TgtVocabSize, opts.SharedEmbeddings);

        // Create metrics
        List <IMetric> metrics = new List <IMetric> {
            new BleuMetric()
        };

        //New training
        var ss = new Seq2Seq(opts, srcVocab, tgtVocab);

        // Add event handler for monitoring
        ss.StatusUpdateWatcher += Ss_StatusUpdateWatcher;
        ss.EpochEndWatcher     += Ss_EpochEndWatcher;

        // Kick off training
        ss.Train(maxTrainingEpoch: opts.MaxEpochNum, trainCorpus: trainCorpus, validCorpusList: validCorpusList.ToArray(), learningRate: learningRate, optimizer: optimizer, metrics: metrics, decodingOptions: decodingOptions);

        ss.SaveModel(suffix: ".test");

        // Check if model file exists
        Assert.IsTrue(File.Exists(opts.ModelFilePath + ".test"));
    }
Esempio n. 2
0
    public void TestSeq2SeqBuildSharedVocabs()
    {
        // Build configs for training
        Seq2SeqOptions opts = CreateOptions(trainFolderPath, validFolderPath);

        // Load training corpus
        var trainCorpus = new Seq2SeqCorpus(corpusFilePath: opts.TrainCorpusPath, srcLangName: opts.SrcLang, tgtLangName: opts.TgtLang, batchSize: opts.BatchSize, shuffleBlockSize: opts.ShuffleBlockSize, maxSrcSentLength: opts.MaxTrainSrcSentLength, maxTgtSentLength: opts.MaxTrainTgtSentLength, shuffleEnums: opts.ShuffleType, tooLongSequence: opts.TooLongSequence);

        // Build vocabularies for training
        (var srcVocab, var tgtVocab) = trainCorpus.BuildVocabs(opts.SrcVocabSize, opts.TgtVocabSize, sharedVocab: true);

        Assert.IsTrue(srcVocab.Count == tgtVocab.Count);

        var srcTokens = srcVocab.GetAllTokens();
        var tgtTokens = tgtVocab.GetAllTokens();

        for (int i = 0; i < srcTokens.Count; i++)
        {
            Assert.IsTrue(srcTokens[i] == tgtTokens[i]);
        }
    }
Esempio n. 3
0
        private static void Main(string[] args)
        {
            try
            {
                //Parse command line
                ArgParser argParser = new ArgParser(args, opts);
                if (!opts.ConfigFilePath.IsNullOrEmpty())
                {
                    Console.WriteLine($"Loading config file from '{opts.ConfigFilePath}'");
                    opts = JsonConvert.DeserializeObject <Seq2SeqOptions>(File.ReadAllText(opts.ConfigFilePath));
                }

                Logger.LogFile = $"{nameof(Seq2SeqConsole)}_{opts.Task}_{Utils.GetTimeStamp(DateTime.Now)}.log";
                ShowOptions(args, opts);

                DecodingOptions decodingOptions = opts.CreateDecodingOptions();
                Seq2Seq         ss = null;
                if (opts.Task == ModeEnums.Train)
                {
                    // Load train corpus
                    var trainCorpus = new Seq2SeqCorpus(corpusFilePath: opts.TrainCorpusPath, srcLangName: opts.SrcLang, tgtLangName: opts.TgtLang, batchSize: opts.BatchSize, shuffleBlockSize: opts.ShuffleBlockSize,
                                                        maxSrcSentLength: opts.MaxTrainSrcSentLength, maxTgtSentLength: opts.MaxTrainTgtSentLength, shuffleEnums: opts.ShuffleType, tooLongSequence: opts.TooLongSequence);

                    // Load valid corpus
                    var validCorpusList = new List <Seq2SeqCorpus>();
                    if (!opts.ValidCorpusPaths.IsNullOrEmpty())
                    {
                        string[] validCorpusPathList = opts.ValidCorpusPaths.Split(';');
                        foreach (var validCorpusPath in validCorpusPathList)
                        {
                            validCorpusList.Add(new Seq2SeqCorpus(validCorpusPath, opts.SrcLang, opts.TgtLang, opts.ValBatchSize, opts.ShuffleBlockSize, opts.MaxTestSrcSentLength, opts.MaxTestTgtSentLength, shuffleEnums: opts.ShuffleType, tooLongSequence: opts.TooLongSequence));
                        }
                    }

                    // Create learning rate
                    ILearningRate learningRate = new DecayLearningRate(opts.StartLearningRate, opts.WarmUpSteps, opts.WeightsUpdateCount);

                    // Create optimizer
                    IOptimizer optimizer = Misc.CreateOptimizer(opts);

                    // Create metrics
                    List <IMetric> metrics = CreateMetrics();

                    if (!opts.ModelFilePath.IsNullOrEmpty() && File.Exists(opts.ModelFilePath))
                    {
                        //Incremental training
                        Logger.WriteLine($"Loading model from '{opts.ModelFilePath}'...");
                        ss = new Seq2Seq(opts);
                    }
                    else
                    {
                        // Load or build vocabulary
                        Vocab srcVocab = null;
                        Vocab tgtVocab = null;
                        if (!opts.SrcVocab.IsNullOrEmpty() && !opts.TgtVocab.IsNullOrEmpty())
                        {
                            Logger.WriteLine($"Loading source vocabulary from '{opts.SrcVocab}' and target vocabulary from '{opts.TgtVocab}'. Shared vocabulary is '{opts.SharedEmbeddings}'");
                            if (opts.SharedEmbeddings == true && (opts.SrcVocab != opts.TgtVocab))
                            {
                                throw new ArgumentException("The source and target vocabularies must be identical if their embeddings are shared.");
                            }

                            // Vocabulary files are specified, so we load them
                            srcVocab = new Vocab(opts.SrcVocab);
                            tgtVocab = new Vocab(opts.TgtVocab);
                        }
                        else
                        {
                            Logger.WriteLine($"Building vocabulary from training corpus. Shared vocabulary is '{opts.SharedEmbeddings}'");
                            // We don't specify vocabulary, so we build it from train corpus

                            (srcVocab, tgtVocab) = trainCorpus.BuildVocabs(opts.SrcVocabSize, opts.TgtVocabSize, opts.SharedEmbeddings);
                        }

                        //New training
                        ss = new Seq2Seq(opts, srcVocab, tgtVocab);
                    }

                    // Add event handler for monitoring
                    ss.StatusUpdateWatcher += Misc.Ss_StatusUpdateWatcher;
                    ss.EvaluationWatcher   += Ss_EvaluationWatcher;

                    // Kick off training
                    ss.Train(maxTrainingEpoch: opts.MaxEpochNum, trainCorpus: trainCorpus, validCorpusList: validCorpusList.ToArray(), learningRate: learningRate, optimizer: optimizer, metrics: metrics, decodingOptions: decodingOptions);
                }
                else if (opts.Task == ModeEnums.Valid)
                {
                    Logger.WriteLine($"Evaluate model '{opts.ModelFilePath}' by valid corpus '{opts.ValidCorpusPaths}'");

                    // Create metrics
                    List <IMetric> metrics = CreateMetrics();

                    // Load valid corpus
                    Seq2SeqCorpus validCorpus = new Seq2SeqCorpus(opts.ValidCorpusPaths, opts.SrcLang, opts.TgtLang, opts.ValBatchSize, opts.ShuffleBlockSize, opts.MaxTestSrcSentLength, opts.MaxTestTgtSentLength, shuffleEnums: opts.ShuffleType, tooLongSequence: opts.TooLongSequence);

                    ss = new Seq2Seq(opts);
                    ss.EvaluationWatcher += Ss_EvaluationWatcher;
                    ss.Valid(validCorpus: validCorpus, metrics: metrics, decodingOptions: decodingOptions);
                }
                else if (opts.Task == ModeEnums.Test)
                {
                    if (File.Exists(opts.OutputFile))
                    {
                        Logger.WriteLine(Logger.Level.err, ConsoleColor.Yellow, $"Output file '{opts.OutputFile}' exist. Delete it.");
                        File.Delete(opts.OutputFile);
                    }

                    //Test trained model
                    ss = new Seq2Seq(opts);
                    Stopwatch stopwatch = Stopwatch.StartNew();

                    if (String.IsNullOrEmpty(opts.OutputPromptFile))
                    {
                        ss.Test <Seq2SeqCorpusBatch>(opts.InputTestFile, opts.OutputFile, opts.BatchSize, decodingOptions, opts.SrcSentencePieceModelPath, opts.TgtSentencePieceModelPath);
                    }
                    else
                    {
                        Logger.WriteLine($"Test with prompt file '{opts.OutputPromptFile}'");
                        ss.Test <Seq2SeqCorpusBatch>(opts.InputTestFile, opts.OutputPromptFile, opts.OutputFile, opts.BatchSize, decodingOptions, opts.SrcSentencePieceModelPath, opts.TgtSentencePieceModelPath);
                    }

                    stopwatch.Stop();

                    Logger.WriteLine($"Test mode execution time elapsed: '{stopwatch.Elapsed}'");
                }
                else if (opts.Task == ModeEnums.DumpVocab)
                {
                    ss = new Seq2Seq(opts);
                    ss.DumpVocabToFiles(opts.SrcVocab, opts.TgtVocab);
                }
                else
                {
                    Logger.WriteLine(Logger.Level.err, ConsoleColor.Red, $"Task '{opts.Task}' is not supported.");
                    argParser.Usage();
                }
            }
            catch (Exception err)
            {
                Logger.WriteLine($"Exception: '{err.Message}'");
                Logger.WriteLine($"Call stack: '{err.StackTrace}'");
            }
        }