Esempio n. 1
0
        static ScalarValue LogGamma_Stirling(ScalarValue z)
        {
            if (z.Im < 0.0)
            {
                return(LogGamma_Stirling(z.Conjugate()).Conjugate());
            }

            var f      = (z - 0.5) * z.Ln() - z + Math.Log(2.0 * Math.PI) / 2.0;
            var reduce = f.Im / (2.0 * Math.PI);

            reduce = f.Im - (int)(reduce) * 2.0 * Math.PI;
            f      = new ScalarValue(f.Re, reduce);

            var zsqu = z * z;
            var zp   = z.Clone();

            for (var i = 1; i < 10; i++)
            {
                var f_old = f.Clone();
                f += Helpers.BernoulliNumbers[i] / (2 * i) / (2 * i - 1) / zp;

                if (f == f_old)
                {
                    return(f);
                }

                zp = zp * zsqu;
            }

            throw new YAMPNotConvergedException("gamma");
        }
Esempio n. 2
0
        /// <summary>
        /// The Faddeeva function or Kramp function is a scaled complex complementary error function.
        /// </summary>
        /// <param name="z">The argument z.</param>
        /// <returns>The evaluated value.</returns>
        public static ScalarValue Faddeeva(ScalarValue z)
        {
            if (z.Im < 0.0)
            {
                return(2.0 * (-z * z).Exp() - Faddeeva(-z));
            }

            if (z.Re < 0.0)
            {
                return(Faddeeva(-z.Conjugate()).Conjugate());
            }

            var r = z.Abs();

            if (r < 2.0)
            {
                return((-z * z).Exp() * (1.0 - Erf_Series(-ScalarValue.I * z)));
            }
            else if ((z.Im < 0.1) && (z.Re < 30.0))
            {
                return(Taylor(new ScalarValue(z.Re), Math.Exp(-z.Re * z.Re) + 2.0 * Dawson.DawsonIntegral(z.Re) / Helpers.SqrtPI * ScalarValue.I, new ScalarValue(0.0, z.Im)));
            }
            else if (r > 7.0)
            {
                return(ContinuedFraction(z));
            }

            return(Weideman(z));
        }
        /// <summary>
        /// Cholesky algorithm for symmetric and positive definite matrix.
        /// </summary>
        /// <param name="Arg">Square, symmetric matrix.</param>
        /// <returns>Structure to access L and isspd flag.</returns>
        public CholeskyDecomposition(MatrixValue Arg)
        {
            // Initialize.
            var A = Arg.GetComplexMatrix();

            n = Arg.DimensionY;
            L = new ScalarValue[n][];

            for (int i = 0; i < n; i++)
            {
                L[i] = new ScalarValue[n];
            }

            isspd = Arg.DimensionX == n;

            // Main loop.
            for (int i = 0; i < n; i++)
            {
                var Lrowi = L[i];
                var d     = ScalarValue.Zero;

                for (int j = 0; j < i; j++)
                {
                    var Lrowj = L[j];
                    var s     = new ScalarValue();

                    for (int k = 0; k < j; k++)
                    {
                        s += Lrowi[k] * Lrowj[k].Conjugate();
                    }

                    s        = (A[i][j] - s) / L[j][j];
                    Lrowi[j] = s;
                    d       += s * s.Conjugate();
                    isspd    = isspd && (A[j][i] == A[i][j]);
                }

                d       = A[i][i] - d;
                isspd   = isspd & (d.Abs() > 0.0);
                L[i][i] = d.Sqrt();

                for (int k = i + 1; k < n; k++)
                {
                    L[i][k] = ScalarValue.Zero;
                }
            }
        }
Esempio n. 4
0
 protected override ScalarValue GetValue(ScalarValue value)
 {
     return(value.Conjugate());
 }
Esempio n. 5
0
 protected override ScalarValue GetValue(ScalarValue value)
 {
     return value.Conjugate();
 }
Esempio n. 6
0
        static ScalarValue LogGamma_Stirling(ScalarValue z)
        {
            if (z.Im < 0.0)
            {
                return LogGamma_Stirling(z.Conjugate()).Conjugate();
            }

            var f = (z - 0.5) * z.Ln() - z + Math.Log(2.0 * Math.PI) / 2.0;
            var reduce = f.Im / (2.0 * Math.PI);
            reduce = f.Im - (int)(reduce) * 2.0 * Math.PI;
            f = new ScalarValue(f.Re, reduce);

            var zsqu = z * z;
            var zp = z.Clone();

            for (var i = 1; i < 10; i++)
            {
                var f_old = f.Clone();
                f += Helpers.BernoulliNumbers[i] / (2 * i) / (2 * i - 1) / zp;

                if (f == f_old)
                {
                    return (f);
                }

                zp = zp * zsqu;
            }

            throw new YAMPNotConvergedException("gamma");
        }
Esempio n. 7
0
        /// <summary>
        /// The Faddeeva function or Kramp function is a scaled complex complementary error function.
        /// </summary>
        /// <param name="z">The argument z.</param>
        /// <returns>The evaluated value.</returns>
        public static ScalarValue Faddeeva(ScalarValue z)
        {
            if (z.Im < 0.0)
                return 2.0 * (-z * z).Exp() - Faddeeva(-z);

            if (z.Re < 0.0)
                return Faddeeva(-z.Conjugate()).Conjugate();

            var r = z.Abs();

            if (r < 2.0)
                return (-z * z).Exp() * (1.0 - Erf_Series(-ScalarValue.I * z));
            else if ((z.Im < 0.1) && (z.Re < 30.0))
                return Taylor(new ScalarValue(z.Re), Math.Exp(-z.Re * z.Re) + 2.0 * Dawson.DawsonIntegral(z.Re) / Helpers.SqrtPI * ScalarValue.I, new ScalarValue(0.0, z.Im));
            else if (r > 7.0)
                return ContinuedFraction(z);

            return Weideman(z);
        }