public void TestSVD() { IMatrix Sigma, U, Vstar; SVD.Factorize(A, out U, out Sigma, out Vstar); }
public override double[] Solve() { int m = A.RowCount; int n = A.ColCount; Debug.Assert(m >= n); IVector t = new SparseVector(n); for (int i = 0; i < m; ++i) { t[i] = 0; } IVector s = new SparseVector(n); IVector sy = new SparseVector(n); for (int i = 0; i < n; ++i) { s[i] = 0; } IVector s_old = s; IMatrix U; // U is a m x m orthogonal matrix IMatrix Vt; // V is a n x n orthogonal matrix IMatrix Sigma; // Sigma is a m x n diagonal matrix with non-negative real numbers on its diagonal SVD.Factorize(A, out U, out Sigma, out Vt); // A is a m x n matrix IMatrix Ut = U.Transpose(); IMatrix V = Vt.Transpose(); //SigmaInv is obtained by replacing every non-zero diagonal entry by its reciprocal and transposing the resulting matrix IMatrix SigmaInv = new SparseMatrix(m, n); for (int i = 0; i < n; ++i) // assuming m >= n { double sigma_i = Sigma[i, i]; if (sigma_i < epsilon) // model matrix A is rank deficient { throw new Exception("Near rank-deficient model matrix"); } SigmaInv[i, i] = 1.0 / sigma_i; } SigmaInv = SigmaInv.Transpose(); double[] W = new double[m]; for (int j = 0; j < mMaxIters; ++j) { Console.WriteLine("j: {0}", j); IVector z = new SparseVector(m); double[] g = new double[m]; double[] gprime = new double[m]; for (int k = 0; k < m; ++k) { g[k] = mLinkFunc.GetInvLink(t[k]); gprime[k] = mLinkFunc.GetInvLinkDerivative(t[k]); z[k] = t[k] + (b[k] - g[k]) / gprime[k]; } int tiny_weight_count = 0; for (int k = 0; k < m; ++k) { double w_kk = gprime[k] * gprime[k] / GetVariance(g[k]); W[k] = w_kk; if (w_kk < double.Epsilon * 2) { tiny_weight_count++; } } if (tiny_weight_count > 0) { Console.WriteLine("Warning: tiny weights encountered, (diag(W)) is too small"); } s_old = s; IMatrix UtW = new SparseMatrix(m, m); for (int k = 0; k < m; ++k) { for (int k2 = 0; k2 < m; ++k2) { UtW[k, k2] = Ut[k, k2] * W[k]; } } IMatrix UtWU = UtW.Multiply(U); // m x m positive definite matrix IMatrix L; // m x m lower triangular matrix Cholesky.Factorize(UtWU, out L); IMatrix Lt = L.Transpose(); // m x m upper triangular matrix IVector UtWz = UtW.Multiply(z); // m x 1 vector // (Ut * W * U) * s = Ut * W * z // L * Lt * s = Ut * W * z (Cholesky factorization on Ut * W * U) // L * sy = Ut * W * z, Lt * s = sy s = new SparseVector(n); for (int i = 0; i < n; ++i) { s[i] = 0; sy[i] = 0; } // forward solve sy for L * sy = Ut * W * z for (int i = 0; i < n; ++i) // since m >= n { double cross_prod = 0; for (int k = 0; k < i; ++k) { cross_prod += L[i, k] * sy[k]; } sy[i] = (UtWz[i] - cross_prod) / L[i, i]; } // backward solve s for Lt * s = sy for (int i = n - 1; i >= 0; --i) { double cross_prod = 0; for (int k = i + 1; k < n; ++k) { cross_prod += Lt[i, k] * s[k]; } s[i] = (sy[i] - cross_prod) / Lt[i, i]; } t = U.Multiply(s); if ((s_old.Minus(s)).Norm(2) < mTol) { break; } } IVector x = V.Multiply(SigmaInv).Multiply(Ut).Multiply(t); mX = new double[n]; for (int i = 0; i < n; ++i) { mX[i] = x[i]; } UpdateStatistics(W); return X; }