public static AbstractType[] ResolveIdentifier(string id, ResolverContextStack ctxt, object idObject, bool ModuleScope = false)
        {
            var loc = idObject is ISyntaxRegion ? ((ISyntaxRegion)idObject).Location:CodeLocation.Empty;

            if (ModuleScope)
            {
                ctxt.PushNewScope(ctxt.ScopedBlock.NodeRoot as IAbstractSyntaxTree);
            }

            // If there are symbols that must be preferred, take them instead of scanning the ast
            else
            {
                var tstk = new Stack <ResolverContext>();
                D_Parser.Resolver.Templates.TemplateParameterSymbol dedTemplateParam = null;
                while (!ctxt.CurrentContext.DeducedTemplateParameters.TryGetValue(id, out dedTemplateParam))
                {
                    if (ctxt.PrevContextIsInSameHierarchy)
                    {
                        tstk.Push(ctxt.Pop());
                    }
                    else
                    {
                        break;
                    }
                }

                while (tstk.Count > 0)
                {
                    ctxt.Push(tstk.Pop());
                }

                if (dedTemplateParam != null)
                {
                    return new[] { dedTemplateParam }
                }
                ;
            }

            var matches = NameScan.SearchMatchesAlongNodeHierarchy(ctxt, loc, id);

            var res = HandleNodeMatches(matches, ctxt, null, idObject);

            if (ModuleScope)
            {
                ctxt.Pop();
            }

            return(res);
        }
        bool IsMoreSpecialized(ITypeDeclaration Spec, ITemplateParameter t2, Dictionary <string, ISemantic> t1_DummyParamList)
        {
            // Make a type out of t1's specialization
            var frame = ctxt.PushNewScope(ctxt.ScopedBlock.Parent as IBlockNode);

            // Make the T in e.g. T[] a virtual type so T will be replaced by it
            // T** will be X** then - so a theoretically valid type instead of a template param
            var dummyType = new ClassType(new DClassLike {
                Name = "X"
            }, null, null);

            foreach (var kv in t1_DummyParamList)
            {
                frame.DeducedTemplateParameters[kv.Key] = new TemplateParameterSymbol(t2, dummyType);
            }

            var t1_TypeResults = Resolver.TypeResolution.TypeDeclarationResolver.Resolve(Spec, ctxt);

            if (t1_TypeResults == null || t1_TypeResults.Length == 0)
            {
                return(true);
            }

            ctxt.Pop();

            // Now try to fit the virtual Type t2 into t1 - and return true if it's possible
            return(new TemplateParameterDeduction(new DeducedTypeDictionary(), ctxt).Handle(t2, t1_TypeResults[0]));
        }
Esempio n. 3
0
        public void CacheModuleMethods(IAbstractSyntaxTree ast, ResolverContextStack ctxt)
        {
            foreach (var m in ast)
            {
                if (m is DMethod)
                {
                    var dm = (DMethod)m;

                    if (dm.Parameters == null || dm.Parameters.Count == 0 || dm.Parameters[0].Type == null)
                    {
                        continue;
                    }

                    ctxt.PushNewScope(dm);
                    var firstArg_result = TypeDeclarationResolver.Resolve(dm.Parameters[0].Type, ctxt);
                    ctxt.Pop();

                    if (firstArg_result != null && firstArg_result.Length != 0)
                    {
                        lock (CachedMethods)
                            CachedMethods[dm] = firstArg_result[0];
                    }
                }
            }
        }
Esempio n. 4
0
        public static bool TryGetImplicitProperty(TemplateType template, ResolverContextStack ctxt, out AbstractType[] matchingChild)
        {
            // Check if there are only children that are named as the parent template.
            // That's the requirement for the special treatment.
            matchingChild = null;
            if (!ContainsEquallyNamedChildrenOnly(template.Definition))
            {
                return(false);
            }

            // Prepare a new context
            bool pop = !ctxt.NodeIsInCurrentScopeHierarchy(template.Definition);

            if (pop)
            {
                ctxt.PushNewScope(template.Definition);
            }

            // Introduce the deduced params to the current resolution context
            ctxt.CurrentContext.IntroduceTemplateParameterTypes(template);

            // Get actual overloads,
            var overloads = template.Definition[template.Name];

            // resolve them
            var resolvedOverloads = TypeDeclarationResolver.HandleNodeMatches(overloads, ctxt, null, template.DeclarationOrExpressionBase);

            // and deduce their parameters whereas this time, the parent's parameter are given already, in the case it's e.g.
            // needed as return type or in a declaration condition:

            // Furthermore, pass all the arguments that have been passed to the super template, to the child,
            // so these arguments may be used again for some inner parameters.
            var args = new List <ISemantic>(template.DeducedTypes.Count);

            foreach (var kv in template.DeducedTypes)
            {
                args.Add((ISemantic)kv.Value.ParameterValue ?? kv.Value.Base);
            }

            matchingChild = TemplateInstanceHandler.DeduceParamsAndFilterOverloads(resolvedOverloads, args, true, ctxt);

            // Undo context-related changes
            if (pop)
            {
                ctxt.Pop();
            }
            else
            {
                ctxt.CurrentContext.RemoveParamTypesFromPreferredLocals(template);
            }

            return(matchingChild != null && matchingChild.Length == 1 && matchingChild[0] != null);
        }
Esempio n. 5
0
        /// <summary>
        /// </summary>
        /// <param name="ast">The syntax tree to scan</param>
        /// <param name="symbol">Might not be a child symbol of ast</param>
        /// <param name="ctxt">The context required to search for symbols</param>
        /// <returns></returns>
        public static IEnumerable<ISyntaxRegion> Scan(IAbstractSyntaxTree ast, INode symbol, ResolverContextStack ctxt)
        {
            if (ast == null || symbol == null || ctxt == null)
                return null;

            ctxt.PushNewScope(ast);

            var f = new ReferencesFinder(symbol, ast, ctxt);

            f.S(ast);

            ctxt.Pop();

            return f.l;
        }
Esempio n. 6
0
        /// <summary>
        /// </summary>
        /// <param name="ast">The syntax tree to scan</param>
        /// <param name="symbol">Might not be a child symbol of ast</param>
        /// <param name="ctxt">The context required to search for symbols</param>
        /// <returns></returns>
        public static IEnumerable <ISyntaxRegion> Scan(IAbstractSyntaxTree ast, INode symbol, ResolverContextStack ctxt)
        {
            if (ast == null || symbol == null || ctxt == null)
            {
                return(null);
            }

            ctxt.PushNewScope(ast);

            var f = new ReferencesFinder(symbol, ast, ctxt);

            f.S(ast);

            ctxt.Pop();

            return(f.l);
        }
Esempio n. 7
0
        public void CacheModuleMethods(IAbstractSyntaxTree ast, ResolverContextStack ctxt)
        {
            foreach (var m in ast)
                if (m is DMethod)
                {
                    var dm = (DMethod)m;

                    if (dm.Parameters == null || dm.Parameters.Count == 0 || dm.Parameters[0].Type == null)
                        continue;

                    ctxt.PushNewScope(dm);
                    var firstArg_result = TypeDeclarationResolver.Resolve(dm.Parameters[0].Type, ctxt);
                    ctxt.Pop();

                    if (firstArg_result != null && firstArg_result.Length != 0)
                        lock (CachedMethods)
                            CachedMethods[dm] = firstArg_result[0];
                }
        }
Esempio n. 8
0
        /// <summary>
        /// Takes the class passed via the tr, and resolves its base class and/or implemented interfaces.
        /// Also usable for enums.
        ///
        /// Never returns null. Instead, the original 'tr' object will be returned if no base class was resolved.
        /// Will clone 'tr', whereas the new object will contain the base class.
        /// </summary>
        public static UserDefinedType ResolveBaseClasses(UserDefinedType tr, ResolverContextStack ctxt, bool ResolveFirstBaseIdOnly = false)
        {
            if (bcStack > 8)
            {
                bcStack--;
                return(tr);
            }

            if (tr is EnumType)
            {
                var et = tr as EnumType;

                AbstractType bt = null;

                if (et.Definition.Type == null)
                {
                    bt = new PrimitiveType(DTokens.Int);
                }
                else
                {
                    if (tr.Definition.Parent is IBlockNode)
                    {
                        ctxt.PushNewScope((IBlockNode)tr.Definition.Parent);
                    }

                    var bts = TypeDeclarationResolver.Resolve(et.Definition.Type, ctxt);

                    if (tr.Definition.Parent is IBlockNode)
                    {
                        ctxt.Pop();
                    }

                    ctxt.CheckForSingleResult(bts, et.Definition.Type);

                    if (bts != null && bts.Length != 0)
                    {
                        bt = bts[0];
                    }
                }

                return(new EnumType(et.Definition, bt, et.DeclarationOrExpressionBase));
            }

            var dc = tr.Definition as DClassLike;

            // Return immediately if searching base classes of the Object class
            if (dc == null || ((dc.BaseClasses == null || dc.BaseClasses.Count < 1) && dc.Name == "Object"))
            {
                return(tr);
            }

            // If no base class(es) specified, and if it's no interface that is handled, return the global Object reference
            // -- and do not throw any error message, it's ok
            if (dc.BaseClasses == null || dc.BaseClasses.Count < 1)
            {
                if (tr is ClassType)                // Only Classes can inherit from non-interfaces
                {
                    return(new ClassType(dc, tr.DeclarationOrExpressionBase, ctxt.ParseCache.ObjectClassResult));
                }
                return(tr);
            }

            #region Base class & interface resolution
            TemplateIntermediateType baseClass = null;
            var interfaces = new List <InterfaceType>();

            if (!(tr is ClassType || tr is InterfaceType))
            {
                if (dc.BaseClasses.Count != 0)
                {
                    ctxt.LogError(dc, "Only classes and interfaces may inherit from other classes/interfaces");
                }
                return(tr);
            }

            for (int i = 0; i < (ResolveFirstBaseIdOnly ? 1 : dc.BaseClasses.Count); i++)
            {
                var type = dc.BaseClasses[i];

                // If there's an explicit 'Object' inheritance, also return the pre-resolved object class
                if (type is IdentifierDeclaration && ((IdentifierDeclaration)type).Id == "Object")
                {
                    if (baseClass != null)
                    {
                        ctxt.LogError(new ResolutionError(dc, "Class must not have two base classes"));
                        continue;
                    }
                    else if (i != 0)
                    {
                        ctxt.LogError(new ResolutionError(dc, "The base class name must preceed base interfaces"));
                        continue;
                    }

                    baseClass = ctxt.ParseCache.ObjectClassResult;
                    continue;
                }

                if (type == null || type.ToString(false) == dc.Name || dc.NodeRoot == dc)
                {
                    ctxt.LogError(new ResolutionError(dc, "A class cannot inherit from itself"));
                    continue;
                }

                ctxt.PushNewScope(dc.Parent as IBlockNode);

                bcStack++;

                var res = TypeDeclarationResolver.Resolve(type, ctxt);

                ctxt.CheckForSingleResult(res, type);

                if (res != null && res.Length != 0)
                {
                    var r = res[0];
                    if (r is ClassType || r is TemplateType)
                    {
                        if (tr is InterfaceType)
                        {
                            ctxt.LogError(new ResolutionError(type, "An interface cannot inherit from non-interfaces"));
                        }
                        else if (i == 0)
                        {
                            baseClass = (TemplateIntermediateType)r;
                        }
                        else
                        {
                            ctxt.LogError(new ResolutionError(dc, "The base " + (r is ClassType ?  "class" : "template") + " name must preceed base interfaces"));
                        }
                    }
                    else if (r is InterfaceType)
                    {
                        interfaces.Add((InterfaceType)r);
                    }
                    else
                    {
                        ctxt.LogError(new ResolutionError(type, "Resolved class is neither a class nor an interface"));
                        continue;
                    }
                }

                bcStack--;

                ctxt.Pop();
            }
            #endregion

            if (baseClass == null && interfaces.Count == 0)
            {
                return(tr);
            }

            if (tr is ClassType)
            {
                return(new ClassType(dc, tr.DeclarationOrExpressionBase, baseClass, interfaces.Count == 0 ? null : interfaces.ToArray(), tr.DeducedTypes));
            }
            else if (tr is InterfaceType)
            {
                return(new InterfaceType(dc, tr.DeclarationOrExpressionBase, interfaces.Count == 0 ? null : interfaces.ToArray(), tr.DeducedTypes));
            }

            // Method should end here
            return(tr);
        }
        public static AbstractType GetMethodReturnType(DMethod method, ResolverContextStack ctxt)
        {
            if (ctxt != null && ctxt.Options.HasFlag(ResolutionOptions.DontResolveBaseTypes))
            {
                return(null);
            }

            /*
             * If a method's type equals null, assume that it's an 'auto' function..
             * 1) Search for a return statement
             * 2) Resolve the returned expression
             * 3) Use that one as the method's type
             */
            bool pushMethodScope = ctxt.ScopedBlock != method;

            if (method.Type != null)
            {
                if (pushMethodScope)
                {
                    ctxt.PushNewScope(method);
                }

                //FIXME: Is it legal to explicitly return a nested type?
                var returnType = TypeDeclarationResolver.Resolve(method.Type, ctxt);

                if (pushMethodScope)
                {
                    ctxt.Pop();
                }

                if (ctxt.CheckForSingleResult(returnType, method.Type))
                {
                    return(returnType[0]);
                }
            }
            else if (method.Body != null)
            {
                ReturnStatement returnStmt = null;
                var             list       = new List <IStatement> {
                    method.Body
                };
                var list2 = new List <IStatement>();

                bool foundMatch = false;
                while (!foundMatch && list.Count > 0)
                {
                    foreach (var stmt in list)
                    {
                        if (stmt is ReturnStatement)
                        {
                            returnStmt = stmt as ReturnStatement;

                            if (!(returnStmt.ReturnExpression is TokenExpression) ||
                                (returnStmt.ReturnExpression as TokenExpression).Token != DTokens.Null)
                            {
                                foundMatch = true;
                                break;
                            }
                        }

                        if (stmt is StatementContainingStatement)
                        {
                            list2.AddRange((stmt as StatementContainingStatement).SubStatements);
                        }
                    }

                    list  = list2;
                    list2 = new List <IStatement>();
                }

                if (returnStmt != null && returnStmt.ReturnExpression != null)
                {
                    if (pushMethodScope)
                    {
                        var dedTypes = ctxt.CurrentContext.DeducedTemplateParameters;
                        ctxt.PushNewScope(method);
                        ctxt.CurrentContext.ScopedStatement = returnStmt;

                        if (dedTypes.Count != 0)
                        {
                            foreach (var kv in dedTypes)
                            {
                                ctxt.CurrentContext.DeducedTemplateParameters[kv.Key] = kv.Value;
                            }
                        }
                    }

                    var t = Evaluation.EvaluateType(returnStmt.ReturnExpression, ctxt);

                    if (pushMethodScope)
                    {
                        ctxt.Pop();
                    }

                    return(t);
                }
            }

            return(null);
        }
Esempio n. 10
0
        /// <summary>
        /// The variable's or method's base type will be resolved (if auto type, the intializer's type will be taken).
        /// A class' base class will be searched.
        /// etc..
        /// </summary>
        public static AbstractType HandleNodeMatch(
            INode m,
            ResolverContextStack ctxt,
            AbstractType resultBase = null,
            object typeBase         = null)
        {
            stackNum_HandleNodeMatch++;

            /*
             * Pushing a new scope is only required if current scope cannot be found in the handled node's hierarchy.
             */
            bool popAfterwards = !ctxt.NodeIsInCurrentScopeHierarchy(m);

            if (popAfterwards)
            {
                ctxt.PushNewScope(m is IBlockNode ? (IBlockNode)m : m.Parent as IBlockNode);
            }



            //HACK: Really dirty stack overflow prevention via manually counting call depth
            var canResolveBaseGenerally = stackNum_HandleNodeMatch < 6;



            var DoResolveBaseType = canResolveBaseGenerally &&
                                    !ctxt.Options.HasFlag(ResolutionOptions.DontResolveBaseClasses) &&
                                    (m.Type == null || m.Type.ToString(false) != m.Name);

            AbstractType ret = null;

            // To support resolving type parameters to concrete types if the context allows this, introduce all deduced parameters to the current context
            if (canResolveBaseGenerally && resultBase is DSymbol)
            {
                ctxt.CurrentContext.IntroduceTemplateParameterTypes((DSymbol)resultBase);
            }

            // Only import symbol aliases are allowed to search in the parse cache
            if (m is ImportSymbolAlias)
            {
                var isa = (ImportSymbolAlias)m;

                if (isa.IsModuleAlias ? isa.Type != null : isa.Type.InnerDeclaration != null)
                {
                    var mods = new List <DModule>();
                    var td   = isa.IsModuleAlias ? isa.Type : isa.Type.InnerDeclaration;
                    foreach (var mod in ctxt.ParseCache.LookupModuleName(td.ToString()))
                    {
                        mods.Add(mod as DModule);
                    }

                    if (mods.Count == 0)
                    {
                        ctxt.LogError(new NothingFoundError(isa.Type));
                    }
                    else if (mods.Count > 1)
                    {
                        var m__ = new List <ISemantic>();

                        foreach (var mod in mods)
                        {
                            m__.Add(new ModuleSymbol(mod, isa.Type));
                        }

                        ctxt.LogError(new AmbiguityError(isa.Type, m__));
                    }

                    var bt = mods.Count != 0 ? (AbstractType) new ModuleSymbol(mods[0], td) : null;

                    //TODO: Is this correct behaviour?
                    if (!isa.IsModuleAlias)
                    {
                        var furtherId = ResolveFurtherTypeIdentifier(isa.Type.ToString(false), new[] { bt }, ctxt, isa.Type);

                        ctxt.CheckForSingleResult(furtherId, isa.Type);

                        if (furtherId != null && furtherId.Length != 0)
                        {
                            bt = furtherId[0];
                        }
                        else
                        {
                            bt = null;
                        }
                    }

                    ret = new AliasedType(isa, bt, isa.Type);
                }
            }
            else if (m is DVariable)
            {
                var          v  = (DVariable)m;
                AbstractType bt = null;

                if (DoResolveBaseType)
                {
                    var bts = TypeDeclarationResolver.Resolve(v.Type, ctxt);

                    if (bts != null && bts.Length != 0 && ctxt.CheckForSingleResult(bts, v.Type))
                    {
                        bt = bts[0];
                    }

                    // For auto variables, use the initializer to get its type
                    else if (v.Initializer != null)
                    {
                        bt = ExpressionSemantics.Evaluation.EvaluateType(v.Initializer, ctxt);
                    }

                    // Check if inside an foreach statement header
                    if (bt == null && ctxt.ScopedStatement != null)
                    {
                        bt = GetForeachIteratorType(v, ctxt);
                    }
                }

                // Note: Also works for aliases! In this case, we simply try to resolve the aliased type, otherwise the variable's base type
                ret = v.IsAlias ?
                      (DSymbol) new AliasedType(v, bt, typeBase as ISyntaxRegion) :
                      new MemberSymbol(v, bt, typeBase as ISyntaxRegion);
            }
            else if (m is DMethod)
            {
                ret = new MemberSymbol((DNode)m,
                                       DoResolveBaseType ? GetMethodReturnType((DMethod)m, ctxt) : null
                                       , typeBase as ISyntaxRegion);
            }
            else if (m is DClassLike)
            {
                UserDefinedType udt = null;
                var             dc  = (DClassLike)m;

                var invisibleTypeParams = new Dictionary <string, TemplateParameterSymbol>();

                /*
                 * Add 'superior' template parameters to the current symbol because the parameters
                 * might be re-used in the nested class.
                 */
                var tStk = new Stack <ResolverContext>();
                do
                {
                    var curCtxt = ctxt.Pop();
                    tStk.Push(curCtxt);
                    foreach (var kv in curCtxt.DeducedTemplateParameters)
                    {
                        if (!dc.ContainsTemplateParameter(kv.Key) &&
                            !invisibleTypeParams.ContainsKey(kv.Key))
                        {
                            invisibleTypeParams.Add(kv.Key, kv.Value);
                        }
                    }
                } while (ctxt.PrevContextIsInSameHierarchy);

                while (tStk.Count != 0)
                {
                    ctxt.Push(tStk.Pop());
                }

                switch (dc.ClassType)
                {
                case DTokens.Struct:
                    ret = new StructType(dc, typeBase as ISyntaxRegion, invisibleTypeParams);
                    break;

                case DTokens.Union:
                    ret = new UnionType(dc, typeBase as ISyntaxRegion, invisibleTypeParams);
                    break;

                case DTokens.Class:
                    udt = new ClassType(dc, typeBase as ISyntaxRegion, null, null, invisibleTypeParams);
                    break;

                case DTokens.Interface:
                    udt = new InterfaceType(dc, typeBase as ISyntaxRegion, null, invisibleTypeParams);
                    break;

                case DTokens.Template:
                    ret = new TemplateType(dc, typeBase as ISyntaxRegion, invisibleTypeParams);
                    break;

                default:
                    ctxt.LogError(new ResolutionError(m, "Unknown type (" + DTokens.GetTokenString(dc.ClassType) + ")"));
                    break;
                }

                if (dc.ClassType == DTokens.Class || dc.ClassType == DTokens.Interface)
                {
                    if (canResolveBaseGenerally &&
                        !ctxt.Options.HasFlag(ResolutionOptions.DontResolveBaseClasses))
                    {
                        ret = DResolver.ResolveBaseClasses(udt, ctxt);
                    }
                    else
                    {
                        ret = udt;
                    }
                }
            }
            else if (m is IAbstractSyntaxTree)
            {
                var mod = (IAbstractSyntaxTree)m;
                if (typeBase != null && typeBase.ToString() != mod.ModuleName)
                {
                    var pack = ctxt.ParseCache.LookupPackage(typeBase.ToString()).First();
                    if (pack != null)
                    {
                        ret = new PackageSymbol(pack, typeBase as ISyntaxRegion);
                    }
                }
                else
                {
                    ret = new ModuleSymbol(m as DModule, typeBase as ISyntaxRegion);
                }
            }
            else if (m is DEnum)
            {
                ret = new EnumType((DEnum)m, typeBase as ISyntaxRegion);
            }
            else if (m is TemplateParameterNode)
            {
                //ResolveResult[] templateParameterType = null;

                //TODO: Resolve the specialization type
                //var templateParameterType = TemplateInstanceHandler.ResolveTypeSpecialization(tmp, ctxt);
                ret = new TemplateParameterSymbol((TemplateParameterNode)m, null, typeBase as ISyntaxRegion);
            }

            if (canResolveBaseGenerally && resultBase is DSymbol)
            {
                ctxt.CurrentContext.RemoveParamTypesFromPreferredLocals((DSymbol)resultBase);
            }

            if (popAfterwards)
            {
                ctxt.Pop();
            }

            stackNum_HandleNodeMatch--;
            return(ret);
        }
Esempio n. 11
0
        /// <summary>
        /// Used for searching further identifier list parts.
        ///
        /// a.b -- nextIdentifier would be 'b' whereas <param name="resultBases">resultBases</param> contained the resolution result for 'a'
        /// </summary>
        public static AbstractType[] ResolveFurtherTypeIdentifier(string nextIdentifier,
                                                                  IEnumerable <AbstractType> resultBases,
                                                                  ResolverContextStack ctxt,
                                                                  object typeIdObject = null)
        {
            if ((resultBases = DResolver.StripAliasSymbols(resultBases)) == null)
            {
                return(null);
            }

            var r = new List <AbstractType>();

            var nextResults = new List <AbstractType>();

            foreach (var b in resultBases)
            {
                IEnumerable <AbstractType> scanResults = new[] { b };

                do
                {
                    foreach (var scanResult in scanResults)
                    {
                        // First filter out all alias and member results..so that there will be only (Static-)Type or Module results left..
                        if (scanResult is MemberSymbol)
                        {
                            var mr = (MemberSymbol)scanResult;

                            if (mr.Base != null)
                            {
                                nextResults.Add(mr.Base);
                            }
                        }

                        else if (scanResult is UserDefinedType)
                        {
                            var udt         = (UserDefinedType)scanResult;
                            var bn          = udt.Definition as IBlockNode;
                            var nodeMatches = NameScan.ScanNodeForIdentifier(bn, nextIdentifier, ctxt);

                            ctxt.PushNewScope(bn);
                            ctxt.CurrentContext.IntroduceTemplateParameterTypes(udt);

                            var results = HandleNodeMatches(nodeMatches, ctxt, b, typeIdObject);

                            if (results != null)
                            {
                                foreach (var res in results)
                                {
                                    r.Add(AbstractType.Get(res));
                                }
                            }

                            ctxt.CurrentContext.RemoveParamTypesFromPreferredLocals(udt);
                            ctxt.Pop();
                        }
                        else if (scanResult is PackageSymbol)
                        {
                            var pack = ((PackageSymbol)scanResult).Package;

                            IAbstractSyntaxTree accessedModule = null;
                            if (pack.Modules.TryGetValue(nextIdentifier, out accessedModule))
                            {
                                r.Add(new ModuleSymbol(accessedModule as DModule, typeIdObject as ISyntaxRegion, (PackageSymbol)scanResult));
                            }
                            else if (pack.Packages.TryGetValue(nextIdentifier, out pack))
                            {
                                r.Add(new PackageSymbol(pack, typeIdObject as ISyntaxRegion));
                            }
                        }
                        else if (scanResult is ModuleSymbol)
                        {
                            var modRes = (ModuleSymbol)scanResult;

                            var matches = NameScan.ScanNodeForIdentifier(modRes.Definition, nextIdentifier, ctxt);

                            var results = HandleNodeMatches(matches, ctxt, b, typeIdObject);

                            if (results != null)
                            {
                                foreach (var res in results)
                                {
                                    r.Add(AbstractType.Get(res));
                                }
                            }
                        }
                    }

                    scanResults = DResolver.FilterOutByResultPriority(ctxt, nextResults);
                    nextResults = new List <AbstractType>();
                }while (scanResults != null);
            }

            return(r.Count == 0 ? null : r.ToArray());
        }
        public static AbstractType[] ResolveIdentifier(string id, ResolverContextStack ctxt, object idObject, bool ModuleScope = false)
        {
            var loc = idObject is ISyntaxRegion ? ((ISyntaxRegion)idObject).Location:CodeLocation.Empty;

            if (ModuleScope)
                ctxt.PushNewScope(ctxt.ScopedBlock.NodeRoot as IAbstractSyntaxTree);

            // If there are symbols that must be preferred, take them instead of scanning the ast
            else
            {
                var tstk = new Stack<ResolverContext>();
                D_Parser.Resolver.Templates.TemplateParameterSymbol dedTemplateParam = null;
                while (!ctxt.CurrentContext.DeducedTemplateParameters.TryGetValue(id, out dedTemplateParam))
                {
                    if (ctxt.PrevContextIsInSameHierarchy)
                        tstk.Push(ctxt.Pop());
                    else
                        break;
                }

                while (tstk.Count > 0)
                    ctxt.Push(tstk.Pop());

                if (dedTemplateParam!=null)
                    return new[]{ dedTemplateParam };
            }

            var matches = NameScan.SearchMatchesAlongNodeHierarchy(ctxt, loc, id);

            var res= HandleNodeMatches(matches, ctxt, null, idObject);

            if (ModuleScope)
                ctxt.Pop();

            return res;
        }
        /// <summary>
        /// Used for searching further identifier list parts.
        /// 
        /// a.b -- nextIdentifier would be 'b' whereas <param name="resultBases">resultBases</param> contained the resolution result for 'a'
        /// </summary>
        public static AbstractType[] ResolveFurtherTypeIdentifier(string nextIdentifier,
			IEnumerable<AbstractType> resultBases,
			ResolverContextStack ctxt,
			object typeIdObject=null)
        {
            if((resultBases = DResolver.StripAliasSymbols(resultBases))==null)
                return null;

            var r = new List<AbstractType>();

            var nextResults = new List<AbstractType>();
            foreach (var b in resultBases)
            {
                IEnumerable<AbstractType> scanResults = new[]{ b };

                do
                {
                    foreach (var scanResult in scanResults)
                    {
                        // First filter out all alias and member results..so that there will be only (Static-)Type or Module results left..
                        if (scanResult is MemberSymbol)
                        {
                            var mr = (MemberSymbol)scanResult;

                            if (mr.Base != null)
                                nextResults.Add(mr.Base);
                        }

                        else if (scanResult is UserDefinedType)
                        {
                            var udt = (UserDefinedType)scanResult;
                            var bn=udt.Definition as IBlockNode;
                            var nodeMatches = NameScan.ScanNodeForIdentifier(bn, nextIdentifier, ctxt);

                            ctxt.PushNewScope(bn);
                            ctxt.CurrentContext.IntroduceTemplateParameterTypes(udt);

                            var results = HandleNodeMatches(nodeMatches, ctxt, b, typeIdObject);

                            if (results != null)
                                foreach (var res in results)
                                    r.Add(AbstractType.Get(res));

                            ctxt.CurrentContext.RemoveParamTypesFromPreferredLocals(udt);
                            ctxt.Pop();
                        }
                        else if (scanResult is PackageSymbol)
                        {
                            var pack=((PackageSymbol)scanResult).Package;

                            IAbstractSyntaxTree accessedModule=null;
                            if (pack.Modules.TryGetValue(nextIdentifier, out accessedModule))
                                r.Add(new ModuleSymbol(accessedModule as DModule, typeIdObject as ISyntaxRegion, (PackageSymbol)scanResult));
                            else if (pack.Packages.TryGetValue(nextIdentifier, out pack))
                                r.Add(new PackageSymbol(pack, typeIdObject as ISyntaxRegion));
                        }
                        else if (scanResult is ModuleSymbol)
                        {
                            var modRes = (ModuleSymbol)scanResult;

                            var matches = NameScan.ScanNodeForIdentifier(modRes.Definition, nextIdentifier, ctxt);

                            var results = HandleNodeMatches(matches, ctxt, b, typeIdObject);

                            if (results != null)
                                foreach (var res in results)
                                    r.Add(AbstractType.Get(res));
                        }
                    }

                    scanResults = DResolver.FilterOutByResultPriority(ctxt, nextResults);
                    nextResults = new List<AbstractType>();
                }
                while (scanResults != null);
            }

            return r.Count == 0 ? null : r.ToArray();
        }
        /// <summary>
        /// The variable's or method's base type will be resolved (if auto type, the intializer's type will be taken).
        /// A class' base class will be searched.
        /// etc..
        /// </summary>
        public static AbstractType HandleNodeMatch(
			INode m,
			ResolverContextStack ctxt,
			AbstractType resultBase = null,
			object typeBase = null)
        {
            stackNum_HandleNodeMatch++;

            bool popAfterwards = m.Parent != ctxt.ScopedBlock && m.Parent is IBlockNode;
            if (popAfterwards)
                ctxt.PushNewScope((IBlockNode)m.Parent);

            //HACK: Really dirty stack overflow prevention via manually counting call depth
            var canResolveBaseGenerally = stackNum_HandleNodeMatch < 6;

            var DoResolveBaseType = canResolveBaseGenerally &&
                !ctxt.Options.HasFlag(ResolutionOptions.DontResolveBaseClasses) &&
                (m.Type == null || m.Type.ToString(false) != m.Name);

            AbstractType ret = null;

            // To support resolving type parameters to concrete types if the context allows this, introduce all deduced parameters to the current context
            if (canResolveBaseGenerally && resultBase is DSymbol)
                ctxt.CurrentContext.IntroduceTemplateParameterTypes((DSymbol)resultBase);

            // Only import symbol aliases are allowed to search in the parse cache
            if (m is ImportSymbolAlias)
            {
                var isa = (ImportSymbolAlias)m;

                if (isa.IsModuleAlias ? isa.Type != null : isa.Type.InnerDeclaration != null)
                {
                    var mods = new List<DModule>();
                    var td=isa.IsModuleAlias ? isa.Type : isa.Type.InnerDeclaration;
                    foreach (var mod in ctxt.ParseCache.LookupModuleName(td.ToString()))
                        mods.Add(mod as DModule);

                    if(mods.Count == 0)
                            ctxt.LogError(new NothingFoundError(isa.Type));
                    else if(mods.Count > 1)
                    {
                        var m__=new List<ISemantic>();

                        foreach(var mod in mods)
             							m__.Add(new ModuleSymbol(mod, isa.Type));

                        ctxt.LogError(new AmbiguityError(isa.Type,m__));
                    }

                    var bt=mods.Count != 0 ? (AbstractType)new ModuleSymbol(mods[0], td) : null;

                    //TODO: Is this correct behaviour?
                    if (!isa.IsModuleAlias){
                        var furtherId = ResolveFurtherTypeIdentifier(isa.Type.ToString(false), new[]{ bt }, ctxt, isa.Type);

                        ctxt.CheckForSingleResult(furtherId, isa.Type);

                        if (furtherId != null && furtherId.Length != 0)
                            bt = furtherId[0];
                        else
                            bt = null;
                    }

                    ret = new AliasedType(isa, bt, isa.Type);
                }
            }
            else if (m is DVariable)
            {
                var v = (DVariable)m;
                AbstractType bt = null;

                if (DoResolveBaseType)
                {
                    var bts = TypeDeclarationResolver.Resolve(v.Type, ctxt);

                    if (bts != null && bts.Length != 0 && ctxt.CheckForSingleResult(bts, v.Type))
                        bt = bts[0];

                    // For auto variables, use the initializer to get its type
                    else if (v.Initializer != null)
                        bt = ExpressionSemantics.Evaluation.EvaluateType(v.Initializer, ctxt);

                    // Check if inside an foreach statement header
                    if (bt == null && ctxt.ScopedStatement != null)
                        bt = GetForeachIteratorType(v, ctxt);
                }

                // Note: Also works for aliases! In this case, we simply try to resolve the aliased type, otherwise the variable's base type
                ret=v.IsAlias ?
                    (DSymbol)new AliasedType(v, bt, typeBase as ISyntaxRegion) :
                    new MemberSymbol(v, bt, typeBase as ISyntaxRegion);
            }
            else if (m is DMethod)
            {
                ret = new MemberSymbol((DNode)m,
                    DoResolveBaseType ? GetMethodReturnType((DMethod)m, ctxt) : null
                    , typeBase as ISyntaxRegion);
            }
            else if (m is DClassLike)
            {
                UserDefinedType udt = null;
                var dc=(DClassLike)m;

                switch (dc.ClassType)
                {
                    case DTokens.Struct:
                        udt = new StructType(dc, typeBase as ISyntaxRegion);
                        break;
                    case DTokens.Union:
                        udt = new UnionType(dc, typeBase as ISyntaxRegion);
                        break;
                    case DTokens.Class:
                        udt = new ClassType(dc, typeBase as ISyntaxRegion, null);
                        break;
                    case DTokens.Template:
                        udt = new TemplateType(dc, typeBase as ISyntaxRegion);
                        break;
                    case DTokens.Interface:
                        udt = new InterfaceType(dc, typeBase as ISyntaxRegion);
                        break;
                    default:
                        ctxt.LogError(new ResolutionError(m, "Unknown type ("+DTokens.GetTokenString(dc.ClassType)+")"));
                        break;
                }

                if (canResolveBaseGenerally && !ctxt.Options.HasFlag(ResolutionOptions.DontResolveBaseClasses))
                    ret = DResolver.ResolveBaseClasses(udt, ctxt);
                else
                    ret = udt;
            }
            else if (m is IAbstractSyntaxTree)
            {
                var mod = (IAbstractSyntaxTree)m;
                if (typeBase != null && typeBase.ToString() != mod.ModuleName)
                {
                    var pack = ctxt.ParseCache.LookupPackage(typeBase.ToString()).First();
                    if (pack != null)
                        ret = new PackageSymbol(pack, typeBase as ISyntaxRegion);
                }
                else
                    ret = new ModuleSymbol(m as DModule, typeBase as ISyntaxRegion);
            }
            else if (m is DEnum)
                ret = new EnumType((DEnum)m, typeBase as ISyntaxRegion);
            else if (m is TemplateParameterNode)
            {
                var tmp = ((TemplateParameterNode)m).TemplateParameter;

                //ResolveResult[] templateParameterType = null;

                //TODO: Resolve the specialization type
                //var templateParameterType = TemplateInstanceHandler.ResolveTypeSpecialization(tmp, ctxt);

                ret = new MemberSymbol((DNode)m, null, typeBase as ISyntaxRegion);
            }

            if (canResolveBaseGenerally && resultBase is DSymbol)
                ctxt.CurrentContext.RemoveParamTypesFromPreferredLocals((DSymbol)resultBase);

            if (popAfterwards)
                ctxt.Pop();

            stackNum_HandleNodeMatch--;
            return ret;
        }
        public static AbstractType GetMethodReturnType(DMethod method, ResolverContextStack ctxt)
        {
            if (ctxt!=null && ctxt.Options.HasFlag(ResolutionOptions.DontResolveBaseTypes))
                return null;

            /*
             * If a method's type equals null, assume that it's an 'auto' function..
             * 1) Search for a return statement
             * 2) Resolve the returned expression
             * 3) Use that one as the method's type
             */

            if (method.Type != null)
            {
                var returnType = TypeDeclarationResolver.Resolve(method.Type, ctxt);

                if (ctxt.CheckForSingleResult(returnType, method.Type))
                    return returnType[0];
            }
            else if (method.Body != null)
            {
                ReturnStatement returnStmt = null;
                var list = new List<IStatement> { method.Body };
                var list2 = new List<IStatement>();

                bool foundMatch = false;
                while (!foundMatch && list.Count > 0)
                {
                    foreach (var stmt in list)
                    {
                        if (stmt is ReturnStatement)
                        {
                            returnStmt = stmt as ReturnStatement;

                            if (!(returnStmt.ReturnExpression is TokenExpression) ||
                                (returnStmt.ReturnExpression as TokenExpression).Token != DTokens.Null)
                            {
                                foundMatch = true;
                                break;
                            }
                        }

                        if (stmt is StatementContainingStatement)
                            list2.AddRange((stmt as StatementContainingStatement).SubStatements);
                    }

                    list = list2;
                    list2 = new List<IStatement>();
                }

                if (returnStmt != null && returnStmt.ReturnExpression != null)
                {
                    ctxt.PushNewScope(method);

                    var t= Evaluation.EvaluateType(returnStmt.ReturnExpression, ctxt);

                    ctxt.Pop();

                    return t;
                }
            }

            return null;
        }
Esempio n. 16
0
        public static MemberSymbol[] TryResolveUFCS(
            ISemantic firstArgument,
            PostfixExpression_Access acc,
            ResolverContextStack ctxt)
        {
            if (ctxt == null)
            {
                return(null);
            }

            var name = "";

            if (acc.AccessExpression is IdentifierExpression)
            {
                name = ((IdentifierExpression)acc.AccessExpression).Value as string;
            }
            else if (acc.AccessExpression is TemplateInstanceExpression)
            {
                name = ((TemplateInstanceExpression)acc.AccessExpression).TemplateIdentifier.Id;
            }
            else
            {
                return(null);
            }

            var methodMatches = new List <MemberSymbol>();

            if (ctxt.ParseCache != null)
            {
                foreach (var pc in ctxt.ParseCache)
                {
                    var tempResults = pc.UfcsCache.FindFitting(ctxt, acc.Location, firstArgument, name);

                    if (tempResults != null)
                    {
                        foreach (var m in tempResults)
                        {
                            ctxt.PushNewScope(m);

                            if (m.TemplateParameters != null && m.TemplateParameters.Length != 0)
                            {
                                var ov = TemplateInstanceHandler.DeduceParamsAndFilterOverloads(
                                    new[] { new MemberSymbol(m, null, acc) },
                                    new[] { firstArgument }, true, ctxt);

                                if (ov == null || ov.Length == 0)
                                {
                                    continue;
                                }

                                var ms = (DSymbol)ov[0];
                                ctxt.CurrentContext.IntroduceTemplateParameterTypes(ms);
                            }

                            var mr = TypeDeclarationResolver.HandleNodeMatch(m, ctxt, null, acc) as MemberSymbol;
                            ctxt.Pop();
                            if (mr != null)
                            {
                                mr.IsUFCSResult = true;
                                methodMatches.Add(mr);
                            }
                        }
                    }
                }
            }

            return(methodMatches.Count == 0 ? null : methodMatches.ToArray());
        }