public void LinearRegressionWithResidualSumOfSquares()
        {
            // obtain the test data
            var trainingSet = new List<DataPoint<double>>
            {
                new DataPoint<double>(-1, -1.5),
                new DataPoint<double>(0, 0.5),
                new DataPoint<double>(1, 2.5),
                new DataPoint<double>(2, 4.5),
                new DataPoint<double>(3, 6.5)
            };

            // assume a hypothesis
            var hypothesis = new LinearHypothesis(1);
            var initialCoefficients = Vector<double>.Build.Random(2);

            // cost function is sum of squared errors
            var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet);

            // define the optimization problem
            var problem = new OptimizationProblem<double, IDifferentiableCostFunction<double>>(costFunction, initialCoefficients);

            // optimize!
            var gd = new ResilientErrorGD
            {
                ErrorTolerance = 0.0D
            };
            var result = gd.Minimize(problem);

            // assert!
            var coefficients = result.Coefficients;
            coefficients[0].Should().BeApproximately(0.5, 1E-6D, "because that's the underlying system's intercept");
            coefficients[1].Should().BeApproximately(2, 1E-6D, "because that's the underlying system's slope");
        }
        public void DualLinearRegressionWithResidualSumOfSquares()
        {
            // obtain the test data
            var trainingSet = new List <DataPoint <double> >
            {
                new DataPoint <double>(-1, new [] { -1.5, -1.0 }),
                new DataPoint <double>(0, new [] { 0.5, 1.0 }),
                new DataPoint <double>(1, new [] { 2.5, 3.0 }),
                new DataPoint <double>(2, new [] { 4.5, 5.0 }),
                new DataPoint <double>(3, new [] { 6.5, 6.0 })
            };

            // assume a hypothesis
            var hypothesis          = new DualLinearHypothesis(1);
            var initialCoefficients = Vector <double> .Build.Random(2);

            // cost function is sum of squared errors
            var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet);

            // define the optimization problem
            var problem = new OptimizationProblem <double, IDifferentiableCostFunction <double> >(costFunction, initialCoefficients);

            // optimize!
            var gd = new ResilientErrorGD
            {
                ErrorTolerance = 0.0D
            };
            var result = gd.Minimize(problem);

            // assert!
            var coefficients = result.Coefficients;

            coefficients[0].Should().BeApproximately(0.5, 1E-6D, "because that's the underlying system's intercept");
            coefficients[1].Should().BeApproximately(2, 1E-6D, "because that's the underlying system's slope");
        }
Esempio n. 3
0
        public void PolakRibiereUnivariateExponentialRegressionWithResidualSumOfSquares()
        {
            var theta = Vector <double> .Build.DenseOfArray(new[] { 0D, 14000D, -1.7D });

            var initialTheta = Vector <double> .Build.DenseOfArray(new[] { 0D, 10000D, -1D });

            // define the hypothesis
            var hypothesis = new UnivariateExponentialHypothesis();

            // define a probability distribution
            var distribution = new ContinuousUniform(0D, 1000D);

            // obtain the test data
            const int dataPoints  = 100;
            var       trainingSet = new List <DataPoint <double> >(dataPoints);

            for (int i = 0; i < dataPoints; ++i)
            {
                var inputs = Vector <double> .Build.Random(1, distribution);

                var output = hypothesis.Evaluate(theta, inputs);
                trainingSet.Add(new DataPoint <double>(inputs, output));
            }
            ;

            // cost function is sum of squared errors
            var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet);

            // define the optimization problem
            var problem = new OptimizationProblem <double, IDifferentiableCostFunction <double> >(costFunction, initialTheta);

            // define the line search algorithm
            var lineSearch = new SecantMethod
            {
                MaxLineSearchIterations = 40,
                LineSearchStepSize      = 1E-5D,
                ErrorTolerance          = 1E-5D
            };

            // optimize!
            var gd = new PolakRibiereCG(lineSearch)
            {
                MaxIterations  = 10000,
                ErrorTolerance = 1E-5D
            };
            var result = gd.Minimize(problem);

            // assert!
            var coefficients = result.Coefficients;

            coefficients[1].Should().BeApproximately(theta[1], 1000D, "because that's the underlying system's [a] parameter");
            coefficients[2].Should().BeApproximately(theta[2], 1E-2D, "because that's the underlying system's [b] parameter");
            coefficients[0].Should().BeApproximately(theta[0], 1E-5D, "because that's the underlying system's offset");
        }
Esempio n. 4
0
        public void PolakRibiereRosenbrockParameterFitWithResidualSumOfSquares()
        {
            // parameter is default Rosenbrock
            var realTheta = Vector <double> .Build.DenseOfArray(new[] { 1D, 105D });

            var initialTheta = Vector <double> .Build.DenseOfArray(new[] { 2D, 200D });

            // define the hypothesis
            var hypothesis = new RosenbrockHypothesis();

            // define a probability distribution
            var distribution = new ContinuousUniform(-10D, 10D);

            // obtain the test data
            const int dataPoints  = 10;
            var       trainingSet = new List <DataPoint <double> >(dataPoints);

            for (int i = 0; i < dataPoints; ++i)
            {
                var inputs = Vector <double> .Build.Random(2, distribution);

                var output = hypothesis.Evaluate(realTheta, inputs);
                trainingSet.Add(new DataPoint <double>(inputs, output));
            }
            ;

            // cost function is sum of squared errors
            var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet);

            // define the optimization problem
            var problem = new OptimizationProblem <double, IDifferentiableCostFunction <double> >(costFunction, initialTheta);

            // define the line search algorithm
            var lineSearch = new SecantMethod();

            // optimize!
            var gd = new PolakRibiereCG(lineSearch)
            {
                ErrorTolerance = 1E-8D
            };
            var result = gd.Minimize(problem);

            // assert!
            var coefficients = result.Coefficients;

            coefficients[0].Should().BeApproximately(realTheta[0], 1D, "because that's the functions [a] parameter");
            coefficients[1].Should().BeApproximately(realTheta[1], 1D, "because that's the functions [b] parameter");
        }
        public void DualLinearRegressionWithResidualSumOfSquares()
        {
            // obtain the test data
            var trainingSet = new List<DataPoint<double>>
            {
                new DataPoint<double>(-1, new [] {-1.5 , -1.0 }),
                new DataPoint<double>(0, new [] {0.5, 1.0}),
                new DataPoint<double>(1, new [] {2.5, 3.0}),
                new DataPoint<double>(2, new [] {4.5, 5.0}),
                new DataPoint<double>(3, new [] {6.5, 6.0})
            };

            // assume a hypothesis
            var hypothesis = new DualLinearHypothesis(1);
            var initialCoefficients = Vector<double>.Build.Random(2);

            // cost function is sum of squared errors
            var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet);

            // define the optimization problem
            var problem = new OptimizationProblem<double, IDifferentiableCostFunction<double>>(costFunction, initialCoefficients);

            // define the line search algorithm
            var lineSearch = new SecantMethod()
            {
                ErrorTolerance = 1E-7
            };

            // optimize!
            var gd = new FletcherReevesCG(lineSearch)
            {
                ErrorTolerance = 1E-7
            };
            var result = gd.Minimize(problem);

            // assert!
            var coefficients = result.Coefficients;
            coefficients[0].Should().BeApproximately(0.5, 1E-6D, "because that's the underlying system's intercept");
            coefficients[1].Should().BeApproximately(2, 1E-6D, "because that's the underlying system's slope");
        }
Esempio n. 6
0
        public void LinearRegressionWithResidualSumOfSquares()
        {
            // obtain the test data
            var trainingSet = new List <DataPoint <double> >
            {
                new DataPoint <double>(-1, -1.5),
                new DataPoint <double>(0, 0.5),
                new DataPoint <double>(1, 2.5),
                new DataPoint <double>(2, 4.5),
                new DataPoint <double>(3, 6.5)
            };

            // assume a hypothesis
            var hypothesis          = new LinearHypothesis(1);
            var initialCoefficients = Vector <double> .Build.Random(2);

            // cost function is sum of squared errors
            var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet);

            // define the optimization problem
            var problem = new OptimizationProblem <double, IDifferentiableCostFunction <double> >(costFunction, initialCoefficients);

            // define the line search algorithm
            var lineSearch = new SecantMethod();

            // optimize!
            var gd = new FletcherReevesCG(lineSearch)
            {
                MaxIterations  = 1000,
                ErrorTolerance = 1E-8D
            };
            var result = gd.Minimize(problem);

            // assert!
            var coefficients = result.Coefficients;

            coefficients[0].Should().BeApproximately(0.5, 1E-6D, "because that's the underlying system's intercept");
            coefficients[1].Should().BeApproximately(2, 1E-6D, "because that's the underlying system's slope");
        }
        public void UnivariateExponentialRegressionWithResidualSumOfSquares()
        {
            var theta = Vector<double>.Build.DenseOfArray(new[] { 0D, 13500D, -1.7D });
            var initialTheta = Vector<double>.Build.DenseOfArray(new[] { 0D, 10000D, -1D });

            // define the hypothesis
            var hypothesis = new UnivariateExponentialHypothesis();

            // define a probability distribution
            var distribution = new ContinuousUniform(0D, 1000D);

            // obtain the test data
            const int dataPoints = 100;
            var trainingSet = new List<DataPoint<double>>(dataPoints);
            for (int i = 0; i < dataPoints; ++i)
            {
                var inputs = Vector<double>.Build.Random(1, distribution);
                var output = hypothesis.Evaluate(theta, inputs);
                trainingSet.Add(new DataPoint<double>(inputs, output));
            };

            // cost function is sum of squared errors
            var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet);

            // define the optimization problem
            var problem = new OptimizationProblem<double, IDifferentiableCostFunction<double>>(costFunction, initialTheta);

            // optimize!
            var gd = new ResilientErrorGD();
            var result = gd.Minimize(problem);

            // assert!
            var coefficients = result.Coefficients;
            coefficients[1].Should().BeApproximately(theta[1], 1000D, "because that's the underlying system's [a] parameter");
            coefficients[2].Should().BeApproximately(theta[2], 1E-2D, "because that's the underlying system's [b] parameter");
            coefficients[0].Should().BeApproximately(theta[0], 1E-5D, "because that's the underlying system's offset");
        }
        public void RosenbrockParameterFitWithResidualSumOfSquares()
        {
            // parameter is default Rosenbrock
            var realTheta = Vector<double>.Build.DenseOfArray(new []{1D, 105D});
            var initialTheta = Vector<double>.Build.DenseOfArray(new []{2D, 200D});

            // define the hypothesis
            var hypothesis = new RosenbrockHypothesis();

            // define a probability distribution
            var distribution = new ContinuousUniform(-10D, 10D);

            // obtain the test data
            const int dataPoints = 10;
            var trainingSet = new List<DataPoint<double>>(dataPoints);
            for (int i = 0; i < dataPoints; ++i)
            {
                var inputs = Vector<double>.Build.Random(2, distribution);
                var output = hypothesis.Evaluate(realTheta, inputs);
                trainingSet.Add(new DataPoint<double>(inputs, output));
            };

            // cost function is sum of squared errors
            var costFunction = new ResidualSumOfSquaresCostFunction(hypothesis, trainingSet);

            // define the optimization problem
            var problem = new OptimizationProblem<double, IDifferentiableCostFunction<double>>(costFunction, initialTheta);

            // optimize!
            var gd = new ResilientErrorGD
            {
                ErrorTolerance = 0.0D // TODO: actually use it
            };
            var result = gd.Minimize(problem);

            // assert!
            var coefficients = result.Coefficients;
            coefficients[0].Should().BeApproximately(realTheta[0], 1D, "because that's the functions [a] parameter");
            coefficients[1].Should().BeApproximately(realTheta[1], 1D, "because that's the functions [b] parameter");
        }