public void RealizeEvolution()
        {
            Initialisation initialisation = new Initialisation(initialPopulationCount);
            // Initialisation - validated
            List <Path> population = initialisation.GenerateInitialPopulation();

            for (int i = 0; i < population.Count; i++)
            {
                if (StaticOperations.ValidatePath(population[i]) == false)
                {
                    throw new NotSupportedException();
                }
            }
            // Evaluation
            Evaluation evaluation = new Evaluation();

            evaluation.EvaluatePopulation(population);
            // Encoding
            List <Representation> representations = new List <Representation>();
            Decoder decoder = new Decoder();

            foreach (Path path in population)
            {
                Representation representation = decoder.EncodePath(path);
                representations.Add(representation);
            }
            // Evolution cycle
            for (int i = 0; i < evolutionCycles; i++)
            {
                // Selection
                Selection             selection = new Selection(parentsCount, representations);
                List <Representation> parents   = selection.SelectParents();
                // Genetic operator - validated
                GeneticOperator       geneticOperator = new GeneticOperator(descendantsCount, parents);
                List <Representation> descendants     = geneticOperator.GenerateDescendants();
                // Decoding
                List <Path> descendantPaths = new List <Path>();
                foreach (Representation representation in descendants)
                {
                    Path path = decoder.DecodeRepresentation(representation);
                    if (StaticOperations.ValidatePath(path) == false)
                    {
                        throw new NotSupportedException();
                    }
                    descendantPaths.Add(path);
                }
                // Evaluation
                evaluation.EvaluatePopulation(descendantPaths);
                for (int j = 0; j < descendants.Count; j++)
                {
                    descendants[j].Fitness = descendantPaths[j].Fitness;
                }
                // Replacement
                Replacement replacement = new Replacement(parents, descendants, initialPopulationCount);
                representations = replacement.NextGeneration();
                // Save to export file
                SaveTwoBestMembers(representations);
            }
        }
Esempio n. 2
0
        public void RealiseGroupEvolution()
        {
            // Initialisation
            GroupInitialisation initialisation = new GroupInitialisation(initialPopulationCount, scale);
            List <Individual>   population     = null;

            if (mode == 1)
            {
                population = initialisation.GenerateGroupInitialPopulation();
            }
            if (mode == 2)
            {
                population = initialisation.GenerateRandomGroupInitialPopulation();
            }

            // Validation
            foreach (Individual representation in population)
            {
                if (StaticOperations.ValidateIndividualWithGroups(representation) == false)
                {
                    throw new NotSupportedException();
                }
            }

            // Evaluation
            Evaluation evaluation = new Evaluation(scale);

            foreach (Individual representation in population)
            {
                evaluation.EvaluateIndividual(representation);
            }

            // Evolution cycles
            for (int i = 0; i < evolutionCycles; i++)
            {
                Console.Write("Epoch #" + i + " ");
                // Selection
                Selection         selection = new Selection(initialPopulationCount, population);
                List <Individual> parents   = null;
                if (mode == 1)
                {
                    parents = selection.SelectParents(2);
                }
                if (mode == 2)
                {
                    parents = selection.SelectDiverseParents(2, 5);
                }

                // Genetic operators
                List <Individual>     descendants      = new List <Individual>();
                GroupGeneticOperators geneticOperators = new GroupGeneticOperators(scale);
                for (int j = 0; j < parents.Count; j = j + 2)
                {
                    descendants.AddRange(geneticOperators.GenerateDescendants(parents[j], parents[j + 1]));
                }

                // Evaluation
                foreach (Individual representation in descendants)
                {
                    evaluation.EvaluateIndividual(representation);
                }

                // Replacement
                Replacement replacement = new Replacement(population, descendants, initialPopulationCount);
                population = replacement.NextGeneration();

                List <Individual> orderedPopulation = population.OrderBy(item => item.Fitness).ToList();
                Console.WriteLine("Best individual has fitness: " + orderedPopulation[0].Fitness);
            }

            SaveBestIndividualIntoFile(population[0]);
        }
        public void RealiseEvolution()
        {
            // Initialisation
            ReferenceList     referenceList  = new ReferenceList("tsp.riesenia");
            Initialisation    initialisation = new Initialisation(initialPopulationCount, referenceList);
            List <Individual> population     = initialisation.InitialisePopulation();

            // Evaluation
            Evaluation evaluation = new Evaluation(referenceList);

            foreach (Individual individual in population)
            {
                evaluation.EvaluateIndividual(individual);
            }

            // Validation
            foreach (Individual individual in population)
            {
                if (StaticOperations.ValidateIndividual(individual) == false)
                {
                    throw new NotSupportedException();
                }
            }

            // Evolution cycles
            for (int i = 0; i < evolutionCycles; i++)
            {
                Console.Write("Epoch #" + i);
                // Selection
                Selection         selection = new Selection(population, population.Count);
                List <Individual> parents   = selection.SelectParents(2);

                // Genetic operators
                GeneticOperators  geneticOperators = new GeneticOperators();
                List <Individual> descendants      = new List <Individual>();
                for (int j = 0; j < parents.Count; j = j + 2)
                {
                    descendants.AddRange(geneticOperators.GenerateDescendants(parents[j], parents[j + 1]));
                }

                // Validation
                foreach (Individual individual in descendants)
                {
                    if (StaticOperations.ValidateIndividual(individual) == false)
                    {
                        throw new NotSupportedException();
                    }
                }

                // Evaluation
                foreach (Individual individual in descendants)
                {
                    evaluation.EvaluateIndividual(individual);
                }

                // Replacement
                Replacement replacement = new Replacement(population, descendants, population.Count);
                population = replacement.NextGeneration();

                // Save best individual
                List <Individual> orderedPopulation = population.OrderBy(item => item.Fitness).ToList();
                bestIndividualPerGeneration.Add(orderedPopulation[0]);
                Console.WriteLine(" Minimum fitness: " + orderedPopulation[0].Fitness);
            }

            SaveBestIndividualsToFile(referenceList);
        }
        public void RealiseEvolution()
        {
            // Initialise population - validated
            Initialisation    initialisation = new Initialisation(initialPopulationCount);
            List <Individual> population     = initialisation.GenerateInitialPopulation();

            foreach (Individual individual in population)
            {
                if (StaticOperations.ValidateIndividual(individual) == false)
                {
                    throw new NotSupportedException();
                }
            }

            // Evaluate synthethic fitness of population
            Evaluation evaluation = new Evaluation(firstCriteria, secondCriteria, thirdCriteria);

            foreach (Individual individual in population)
            {
                // Only criteria with true value will be considered
                evaluation.EvaluateIndividual(individual);
            }

            //Evolution cycles
            for (int i = 0; i < evolutionCycles; i++)
            {
                Console.Write("Epoch #" + i);
                // Selection - q-tournament
                Selection         selection = new Selection(population, initialPopulationCount);
                List <Individual> parents   = selection.SelectParents(2);

                // Genetic operators
                List <Individual> descendants      = new List <Individual>();
                GeneticOperators  geneticOperators = new GeneticOperators();
                for (int j = 0; j < parents.Count; j = j + 2)
                {
                    descendants.AddRange(geneticOperators.GenerateDescendants(parents[j], parents[j + 1]));
                }

                // Evaluation
                foreach (Individual individual in descendants)
                {
                    // Only criteria with true value will be considered
                    evaluation.EvaluateIndividual(individual);
                }

                // Replacement
                Replacement replacement = new Replacement(population, descendants, initialPopulationCount);
                population = replacement.NextGeneration();

                // Save best individual
                if (firstCriteria)
                {
                    List <Individual> paretSetSurvivors = population.Where(ind => ind.Fitness == 1 && ind.FitnessVector[0] == 1).ToList();
                    if (paretSetSurvivors.Count == 0)
                    {
                        bestIndividuals.Add(population[0]);
                    }
                    else
                    {
                        paretSetSurvivors.Shuffle();
                        bestIndividuals.Add(paretSetSurvivors[0]);
                    }

                    Console.WriteLine(" Paret set count: " + EvaluateParetSet(population));
                }
                else
                {
                    List <Individual> paretSetSurvivors = population.Where(ind => ind.Fitness == 1).ToList();
                    paretSetSurvivors.Shuffle();
                    bestIndividuals.Add(paretSetSurvivors[0]);
                    Console.WriteLine(" Paret set count: " + EvaluateParetSet(population));
                }
            }

            SaveBestIndividualsInFile();
        }
Esempio n. 5
0
        public void RealiseEvolution()
        {
            // Initialise population
            Initialisation    initialisation = new Initialisation(initialPopulationCount, goldFieldCount);
            List <Individual> population     = initialisation.InitialisePopulation();

            // Validate population
            for (int i = 0; i < population.Count; i++)
            {
                if (StaticOperations.ValidateIndividual(population[i]) == false)
                {
                    throw new NotSupportedException();
                }
            }

            // Evaluate population
            Evaluation evaluation = new Evaluation();

            for (int i = 0; i < population.Count; i++)
            {
                evaluation.EvaluateIndividual(population[i]);
            }

            // Evolution cycle
            for (int i = 0; i < evolutionCycles; i++)
            {
                Console.Write("# Epoch " + (i + 1));
                // Selection
                Selection selection = new Selection(population, population.Count);
                // Q tournament
                List <Individual> parents = selection.SelectParents(4);

                // Genetic operators
                List <Individual> descendants      = new List <Individual>();
                GeneticOperators  geneticOperators = new GeneticOperators();
                for (int j = 0; j < parents.Count; j = j + 2)
                {
                    descendants.AddRange(geneticOperators.GenerateDescendants(parents[j], parents[j + 1]));
                }

                // Evaluation
                for (int j = 0; j < descendants.Count; j++)
                {
                    evaluation.EvaluateIndividual(descendants[j]);
                }

                // Replacement
                Replacement replacement = new Replacement(population, descendants, population.Count);
                if (i - bestFitnessEpoch < 100)
                {
                    population = replacement.NextGeneration();
                }
                else
                {
                    population  = replacement.KillBestIndividuals();
                    bestFitness = double.MaxValue;
                }

                foreach (Individual individual in population)
                {
                    if (StaticOperations.ValidateIndividual(individual) == false)
                    {
                        throw new NotSupportedException();
                    }
                }

                // Save best member
                List <Individual> orderedPopulation = population.OrderBy(ind => ind.Fitness).ToList();
                bestIndividualsPerGeneration.Add(orderedPopulation[0]);
                Console.WriteLine(" Minimum fitness: " + orderedPopulation[0].Fitness + ".");

                if (orderedPopulation[0].Fitness < bestFitness)
                {
                    bestFitness      = orderedPopulation[0].Fitness;
                    bestFitnessEpoch = i;
                }

                if (orderedPopulation[0].Fitness == 0)
                {
                    break;
                }
            }

            SaveDataToFile();
        }