LinearRegression() public static method

public static LinearRegression ( double xVals, double yVals, int inclusiveStart, int exclusiveEnd, double &rsquared, double &yintercept, double &slope ) : void
xVals double The x-axis values.
yVals double The y-axis values.
inclusiveStart int The inclusive inclusiveStart index.
exclusiveEnd int The exclusive exclusiveEnd index.
rsquared double The r^2 value of the line.
yintercept double The y-intercept value of the line (i.e. y = ax + b, yintercept is b).
slope double The slop of the line (i.e. y = ax + b, slope is a).
return void
Esempio n. 1
0
        public void addSampleToRegression(int sample)
        {
            bufferSamples.Add(sample);
            DateTime now         = DateTime.UtcNow;
            int      nowInMillis = (((now.Hour * 60) + now.Minute) * 60 + now.Second) * 1000 + now.Millisecond;

            times.Add(nowInMillis);
            if (bufferSamples.Count > max_num_of_samples)
            {
                bufferSamples.RemoveAt(0);
                times.RemoveAt(0);
            }
            Regression.LinearRegression(times.ToArray(), bufferSamples.ToArray().Select(i => (double)i).ToArray(), 0, times.Count, out rsquared, out yintercept, out slope);
        }
Esempio n. 2
0
        private void PerformLinear_Click(object sender, RoutedEventArgs e)
        {
            double[,] points = getPointSeries();
            if (points == null)
            {
                MessageBox.Show("No points :(");
                return;
            }

            Coefficients aAndb = Regression.LinearRegression(points);

            PlotModel m = new PlotModel {
            };

            m.Axes.Add(new LinearAxis {
                Position = AxisPosition.Bottom
            });
            m.Axes.Add(new LinearAxis {
                Position = AxisPosition.Left, Maximum = 10, Minimum = -10
            });
            m.Series.Add(new FunctionSeries(x => aAndb.a * x + aAndb.b, -10f, 10f, 0.1f, null));

            LineSeries series1 = new LineSeries
            {
                LineStyle    = LineStyle.None,
                MarkerType   = MarkerType.Circle,
                MarkerSize   = 4,
                MarkerStroke = OxyColors.White
            };

            for (int i = points.GetLength(0) - 1; i >= 0; i--)
            {
                series1.Points.Add(new DataPoint(points[i, 0], points[i, 1]));
            }
            m.Series.Add(series1);
            Graph.Model = m;
        }
Esempio n. 3
0
    private void PlotBreakEvenPoint()
    {
        plot4.Clear();
        Finances finances = GameController.instance.player.finances;

        List <int> priceData = new List <int>();

        priceData.AddRange(finances.revenue);
        priceData.Sort();

        List <int> quantityData = finances.GetQuantityData();

        Regression regression = new Regression();
        float      a = 0; float b = 0; float rSq = 0;
        //regression.LinearRegression(quantityData.ToArray(), finances.revenue.ToArray(),out a, out b, out rSq);

        List <float> regressionData = new List <float>();

        float xSize = (quantityData.Max() - quantityData.Min()) / quantityData.Count;

        List <float> quantityNormalizedData = new List <float>()
        {
            0
        };

        for (int i = 0; i < quantityData.Count; i++)
        {
            quantityNormalizedData.Add(quantityNormalizedData.LastOrDefault() + xSize);
        }
        float        ySize = (priceData.Max() - priceData.Min()) / priceData.Count;
        List <float> regressionDataNormalized = new List <float>()
        {
            0
        };

        for (int i = 0; i < priceData.Count; i++)
        {
            regressionDataNormalized.Add(regressionDataNormalized.LastOrDefault() + ySize);
        }
        regressionDataNormalized.Remove(regressionDataNormalized.LastOrDefault());
        //  regressionData.AddRange(regression.Function(quantityNormalizedData, a, b));
        List <int> x = new List <int>()
        {
            1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
        };

        LineGraphVisual originalVisual           = new LineGraphVisual(containers[3], dotSprite, 12, false, new Color(1, 1, 1, 0.0f), Color.white);
        LineGraphVisual revenueVisual            = new LineGraphVisual(containers[3], dotSprite, 12, false, Color.cyan, Color.white);
        LineGraphVisual regressionVisual         = new LineGraphVisual(containers[3], dotSprite, 12, false, Color.yellow, Color.white);
        LineGraphVisual expencesRegressionVisual = new LineGraphVisual(containers[3], dotSprite, 12, false, Color.red, Color.red);
        List <float>    extrems            = new List <float>();
        List <float>    expencesRegression = new List <float>();

        if (finances.revenue.Max() >= finances.staticExpences.Max())
        {
            extrems = plot4.ShowPlot(finances.revenue, originalVisual, 14, containers[3], 0, 0, null, displayGrid: false);
        }
        else
        {
            extrems = plot4.ShowPlot(finances.staticExpences, originalVisual, -1, containers[3], 0, 0, displayGrid: false);
        }
        plot4.ShowPlot(regressionDataNormalized, revenueVisual, 14, containers[3], extrems[0], extrems[1],
                       (int i) => Mathf.RoundToInt(quantityNormalizedData[i]).ToString(), (float f) => String.Format("{0:n0} $", Mathf.RoundToInt(f)), displayGrid: true);

        List <int> yearExpences = finances.GetOverYearExpences();

        if (yearExpences.Count < x.Count)
        {
            for (int i = yearExpences.Count; i < x.Count; i++)
            {
                yearExpences.Add(yearExpences.LastOrDefault());
            }
        }
        regression.LinearRegression(x.ToArray(), yearExpences.ToArray(), out a, out b, out rSq);
        // take last 12 elements and delete the last one in order to make regression. Adjust x accordingly
        expencesRegression = regression.Function(x.ConvertAll(p => (float)p), a, b);

        Debug.Log("-----Linear Regression-----");
        Debug.Log("A: " + a + " B: " + b + "Rsquare: " + rSq);
        plot4.ShowPlot(expencesRegression, expencesRegressionVisual, -1, containers[3], extrems[0], extrems[1], displayGrid: false);
    }
Esempio n. 4
0
        private bool FitModel(Steema.TeeChart.Styles.Series source, ref double[] yhat, out double[] coeffs, int modelindex)
        {
            double[] y          = new double[source.Count];
            double[] x          = new double[source.Count];
            double[] w          = new double[source.Count];
            bool     validmodel = true;

            switch (modelindex)
            {
            case 0:
                // y(x)=a*Exp(b*x)
                // linear model: ln(y) = b*x + ln(a)
                for (int i = 0; i < source.Count; i++)
                {
                    x[i] = source.notMandatory[i];
                    y[i] = Math.Log(source.mandatory[i]);
                    w[i] = source.mandatory[i] * source.mandatory[i];
                }
                Regression.LinearRegression(source.Count, x, y, w, out coeffs);
                coeffs[0] = Math.Exp(coeffs[0]);
                for (int i = 0; i < source.Count; i++)
                {
                    yhat[i] = coeffs[0] * Math.Exp(coeffs[1] * x[i]);
                }
                break;

            case 1:
                // Power model y=a*x^b
                // linear model : ln(y) = b*ln(x) + ln(a)
                for (int i = 0; i < source.Count; i++)
                {
                    x[i] = Math.Log(source.notMandatory[i]);
                    y[i] = Math.Log(source.mandatory[i]);
                    w[i] = source.mandatory[i] * source.mandatory[i];
                }
                Regression.LinearRegression(source.Count, x, y, w, out coeffs);
                coeffs[0] = Math.Exp(coeffs[0]);
                for (int i = 0; i < source.Count; i++)
                {
                    yhat[i] = coeffs[0] * Math.Pow(source.notMandatory[i], coeffs[1]);
                }
                break;

            case 2:
                // Logarithmic model y = b*ln(x)+a
                for (int i = 0; i < source.Count; i++)
                {
                    x[i] = Math.Log(source.notMandatory[i]);
                    y[i] = source.mandatory[i];
                    w[i] = source.mandatory[i] * source.mandatory[i];
                }
                Regression.LinearRegression(source.Count, x, y, w, out coeffs);
                for (int i = 0; i < source.Count; i++)
                {
                    yhat[i] = coeffs[1] * Math.Log(source.notMandatory[i]) + coeffs[0];
                }
                break;

            default: coeffs = new double[0]; break;
            }

            return(validmodel);
        }