Esempio n. 1
0
 public RealRestartingEvolutionStrategy11(IEvaluation <double> evaluation, AStopCondition stopCondition, ARealMutationES11Adaptation mutationAdaptation, int patience, int?seed = null)
     : base(evaluation, stopCondition)
 {
     this.mutationAdaptation = mutationAdaptation;
     randomGeneration        = new RealRandomGenerator(evaluation.pcConstraint, seed);
     this.patience           = patience;
 }
Esempio n. 2
0
 public RealEvolutionStrategy11(IEvaluation <double, double> evaluation, IStopCondition stopCondition,
                                ARealMutationES11Adaptation mutationAdaptation, int?seed = null)
     : base(evaluation, stopCondition, new OptimizationState <double>(evaluation.tMaxValue))
 {
     this.mutationAdaptation = mutationAdaptation;
     randomGeneration        = new RealRandomGenerator(evaluation.pcConstraint, seed);
 }
Esempio n. 3
0
 public RealEvolutionStrategy11(IEvaluation <double, double> evaluation, IStopCondition stopCondition, ARealMutationES11Adaptation mutationAdaptation, int?seed = null)
 {
     Result                  = null;
     this.evaluation         = evaluation;
     this.stopCondition      = stopCondition;
     this.mutationAdaptation = mutationAdaptation;
     randomGeneration        = new RealRandomGenerator(evaluation.pcConstraint, seed);
 }
Esempio n. 4
0
        public CMAES(IEvaluation <double> evaluation, AStopCondition stopCondition, double initSigma, int?seed = null)
            : base(evaluation, stopCondition)
        {
            this.initSigma = initSigma;

            normalRNG     = new NormalRealRandom(seed);
            realGenerator = new RealRandomGenerator(evaluation.pcConstraint, seed);

            int N = evaluation.iSize;

            previousMeans = Vector <double> .Build.Dense(N);

            means = Vector <double> .Build.Dense(N);

            covarianceMatrix = Matrix <double> .Build.Dense(N, N);

            selectionParameters  = new SelectionParameters(N);
            stepSizeParameters   = new StepSizeParameters(N, initSigma);
            adaptationParameters = new AdaptationParameters(N, selectionParameters);

            sampledPopulation = new List <Individual>(selectionParameters.Lambda);
        }