public void LoadData(ref List <InputDataType> inputData, ref List <OutputDataType> outputData)
        {
            String folderPath = "TRAINING_DATA2";

            foreach (string file in Directory.EnumerateFiles(folderPath, "*.TD"))
            {
                var readFile     = File.ReadAllBytes(file);
                var skeletonList = ReadWriteObjectFile.FromByteArray <List <Skeleton> >(readFile);
                foreach (Skeleton skel in skeletonList)
                {
                    var output = Regex.Replace(file.ToUpper(), @"[\d-]\.TD", string.Empty).ToUpper().Split(new string[] { "\\" }, StringSplitOptions.None)[1];
                    outputData.Add(DataTypeResolver <OutputDataType> .CastObject(output));
                    inputData.Add(DataTypeResolver <InputDataType> .CastObject(skel));
                }
            }
        }
        private static void NameOfMethodToCall()
        {
            foreach (var potentialSensor in KinectSensor.KinectSensors)
            {
                if (potentialSensor.Status == KinectStatus.Connected)
                {
                    KinectController.sensor = potentialSensor;
                    break;
                }
            }

            if (null != KinectController.sensor)
            {
                TransformSmoothParameters smoothingParam = new TransformSmoothParameters();

                //smoothingParam.Smoothing = 0.7f;
                //smoothingParam.Correction = 0.3f;
                //smoothingParam.Prediction = 1.0f;
                //smoothingParam.JitterRadius = 1.0f;
                //smoothingParam.MaxDeviationRadius = 1.0f;
                //// Turn on the skeleton stream to receive skeleton frames
                KinectController.sensor.SkeletonStream.Enable(smoothingParam);

                // Add an event handler to be called whenever there is new color frame data
                KinectController.sensor.SkeletonFrameReady += SensorSkeletonFrameReady;

                //KinectController.postureRecognition = new PostureRecognition<Skeleton, string>(PatternType.AnglePatternElbowKnee, DataTrainingType.DataTrainingFile, 100000);
                //KinectController.postureRecognition.training();

                KinectController.postureRecognition = ReadWriteObjectFile.FromByteArray <PostureRecognition <Skeleton, string> >(Convert.FromBase64String(DbServices.GetTrainingRed("seven", "posture")));

                // Start the sensor!
                try
                {
                    KinectController.sensor.Start();
                }
                catch (IOException)
                {
                    KinectController.sensor = null;
                }
            }
            //while (true) ;
            // This will be executed on another thread
        }
        static void Main(string[] args)
        {
            PostureRecognition <Skeleton, string> postureRecognition = new PostureRecognition <Skeleton, string>(PatternType.AnglePatternElbowKnee, DataTrainingType.DataTrainingFile, 100000);

            //1000000
            //Console.WriteLine("MOSTRANDO DATOS BRUTOS" + "---------------------------------------------------");
            //List<Pose> poselist = LoadData("TRAINING_DATA3");
            //printPoses(poselist);
            //Console.WriteLine("ITERACION : " + postureRecognition.training() + "-------------------------------------------------------\n");

            Console.WriteLine("TESTING" + "-------------------------------------------------------");

            postureRecognition = ReadWriteObjectFile.FromByteArray <PostureRecognition <Skeleton, string> >(Convert.FromBase64String(DbServices.GetTrainingRed("octavo", "posture")));

            String folderPath = "TESTING";
            int    counter;

            foreach (string file in Directory.EnumerateFiles(folderPath, "*.TD"))
            {
                var readFile     = File.ReadAllBytes(file);
                var skeletonList = ReadWriteObjectFile.FromByteArray <List <Skeleton> >(readFile);
                counter = 0;
                foreach (Skeleton skel in skeletonList)
                {
                    if (counter == 7)
                    {
                        break;
                    }
                    var x = postureRecognition.Predict(skel);
                    if (x != null && x.Length > 0)
                    {
                        Console.Write(x + "\n");
                    }
                    counter++;
                }
            }
        }
        public static List <Pose> LoadData(string folderPath)
        {
            List <Pose> poseslist = new List <Pose>();

            //String folderPath = "TRAINING_DATA3";
            foreach (string file in Directory.EnumerateFiles(folderPath, "*.TD"))
            {
                var readFile     = File.ReadAllBytes(file);
                var skeletonList = ReadWriteObjectFile.FromByteArray <List <Skeleton> >(readFile);
                //Console.WriteLine("NRO: " + skeletonList.Count );
                foreach (Skeleton skel in skeletonList)
                {
                    var output = Regex.Replace(file.ToUpper(), @"[\d]*?\.TD", string.Empty).ToUpper().Split(new string[] { "\\" }, StringSplitOptions.None)[1];
                    //outputData.Add(DataTypeResolver<OutputDataType>.CastObject(output));
                    //inputData.Add(DataTypeResolver<InputDataType>.CastObject(skel));
                    //Console.WriteLine("FILE: " + output);
                    Pose posetemp = new Pose();
                    posetemp.InputData  = skel;
                    posetemp.OutputData = output;
                    poseslist.Add(posetemp);
                }
            }
            return(poseslist);
        }
Esempio n. 5
0
        /// <summary>
        /// Execute startup tasks
        /// </summary>
        /// <param name="sender">object sending the event</param>
        /// <param name="e">event arguments</param>
        private void WindowLoaded(object sender, RoutedEventArgs e)
        {
            // Create the drawing group we'll use for drawing
            this.drawingGroup = new DrawingGroup();

            // Create an image source that we can use in our image control
            this.imageSource = new DrawingImage(this.drawingGroup);

            // Display the drawing using our image control
            Image.Source = this.imageSource;

            // Look through all sensors and start the first connected one.
            // This requires that a Kinect is connected at the time of app startup.
            // To make your app robust against plug/unplug,
            // it is recommended to use KinectSensorChooser provided in Microsoft.Kinect.Toolkit (See components in Toolkit Browser).
            foreach (var potentialSensor in KinectSensor.KinectSensors)
            {
                if (potentialSensor.Status == KinectStatus.Connected)
                {
                    this.sensor = potentialSensor;
                    break;
                }
            }

            if (null != this.sensor)
            {
                TransformSmoothParameters smoothingParam = new TransformSmoothParameters();

                smoothingParam.Smoothing          = 0.7f;
                smoothingParam.Correction         = 0.3f;
                smoothingParam.Prediction         = 1.0f;
                smoothingParam.JitterRadius       = 1.0f;
                smoothingParam.MaxDeviationRadius = 1.0f;
                // Turn on the skeleton stream to receive skeleton frames
                this.sensor.SkeletonStream.Enable(smoothingParam);

                // Add an event handler to be called whenever there is new color frame data
                this.sensor.SkeletonFrameReady += this.SensorSkeletonFrameReady;

                //postureRecognition = new PostureRecognition<Skeleton, string>(PatternType.AnglePatternElbowKnee, DataTrainingType.DataTrainingFile, 100000);
                //postureRecognition.training();
                //string code = Convert.ToBase64String(ReadWriteObjectFile.ObjectToByteArray(postureRecognition));
                //DbServices.AddTrainingRed("seven", code, "posture");

                postureRecognition = ReadWriteObjectFile.FromByteArray <PostureRecognition <Skeleton, string> >(Convert.FromBase64String(DbServices.GetTrainingRed("seven", "posture")));


                ExecuteThreadServiceAsync();
                StartSocketListenner();
                // Start the sensor!
                try
                {
                    this.sensor.Start();
                }
                catch (IOException)
                {
                    this.sensor = null;
                }
            }

            /*
             * // Turn on the skeleton stream to receive skeleton frames
             * this.sensor.SkeletonStream.Enable();
             *
             *  // Add an event handler to be called whenever there is new color frame data
             *  this.sensor.SkeletonFrameReady += this.SensorSkeletonFrameReady;
             *
             *  // Start the sensor!
             *  try
             *  {
             *      this.sensor.Start();
             *  }
             *  catch (IOException)
             *  {
             *      this.sensor = null;
             *  }
             * }
             */

            if (null == this.sensor)
            {
                this.statusBarText.Text = Properties.Resources.NoKinectReady;
            }
        }