Esempio n. 1
0
        public void SpeedTest()
        {
            int inwidth = 512, inheight = 512, inchannels = 32, outchannels = 32, ksize = 3, stride = 2;
            int outwidth = (inwidth - ksize) / stride + 1, outheight = (inheight - ksize) / stride + 1;

            OverflowCheckedTensor x_tensor  = new OverflowCheckedTensor(Shape.Map2D(inchannels, inwidth, inheight));
            OverflowCheckedTensor y_tensor  = new OverflowCheckedTensor(Shape.Map2D(outchannels, outwidth, outheight));

            OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels, outchannels / 4, ksize, ksize));

            QuaternionKernelProduct2D ope   = new QuaternionKernelProduct2D(inwidth, inheight, inchannels, outchannels, ksize, ksize, stride);

            Stopwatch sw = new Stopwatch();

            sw.Start();

            ope.Execute(x_tensor, y_tensor, gw_tensor);
            ope.Execute(x_tensor, y_tensor, gw_tensor);
            ope.Execute(x_tensor, y_tensor, gw_tensor);
            ope.Execute(x_tensor, y_tensor, gw_tensor);

            sw.Stop();

            Console.WriteLine($"{sw.ElapsedMilliseconds / 4} msec");
        }
Esempio n. 2
0
        public void OverflowTest()
        {
            foreach (bool transpose in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 4, 8, 12 })
                    {
                        foreach (int outchannels in new int[] { 4, 8, 12 })
                        {
                            foreach (int kheight in new int[] { 1, 3, 5 })
                            {
                                foreach (int kwidth in new int[] { 1, 3, 5 })
                                {
                                    foreach (int stride in new int[] { 1, 2, 3 })
                                    {
                                        foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                        {
                                            foreach (int inheight in new int[] { 8, 9, 19, 23 })
                                            {
                                                int outwidth = (inwidth - kwidth) / stride + 1, outheight = (inheight - kheight) / stride + 1;

                                                float[] xval = (new float[inwidth * inheight * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                                float[] yval = (new float[outwidth * outheight * outchannels * batch]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                                OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(inchannels, inwidth, inheight, batch), xval);
                                                OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(outchannels, outwidth, outheight, batch), yval);

                                                OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels, outchannels / 4, kwidth, kheight));

                                                QuaternionKernelProduct2D ope = new QuaternionKernelProduct2D(inwidth, inheight, inchannels, outchannels, kwidth, kheight, stride, transpose, batch);

                                                ope.Execute(x_tensor, y_tensor, gw_tensor);

                                                CollectionAssert.AreEqual(xval, x_tensor.State);
                                                CollectionAssert.AreEqual(yval, y_tensor.State);

                                                gw_tensor.CheckOverflow();

                                                Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch},{transpose}");
                                            }
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }
Esempio n. 3
0
        public void ExecuteTest()
        {
            float max_err = 0;

            foreach (int batch in new int[] { 1, 2, 3 })
            {
                foreach (int inchannels in new int[] { 4, 8, 12 })
                {
                    foreach (int outchannels in new int[] { 4, 8, 12 })
                    {
                        foreach (int kheight in new int[] { 1, 3, 5 })
                        {
                            foreach (int kwidth in new int[] { 1, 3, 5 })
                            {
                                foreach (int stride in new int[] { 1, 2, 3 })
                                {
                                    foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                    {
                                        foreach (int inheight in new int[] { 8, 9, 19, 23 })
                                        {
                                            int outwidth = (inwidth - kwidth) / stride + 1, outheight = (inheight - kheight) / stride + 1;

                                            float[] xval = (new float[inwidth * inheight * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                            float[] yval = (new float[outwidth * outheight * outchannels * batch]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                            Quaternion[] xcval = (new Quaternion[xval.Length / 4])
                                                                 .Select((_, idx) => new Quaternion(xval[idx * 4], xval[idx * 4 + 1], xval[idx * 4 + 2], xval[idx * 4 + 3])).ToArray();

                                            Quaternion[] ycval = (new Quaternion[yval.Length / 4])
                                                                 .Select((_, idx) => new Quaternion(yval[idx * 4], yval[idx * 4 + 1], yval[idx * 4 + 2], yval[idx * 4 + 3])).ToArray();

                                            QuaternionMap2D x = new QuaternionMap2D(inchannels / 4, inwidth, inheight, batch, xcval);
                                            QuaternionMap2D y = new QuaternionMap2D(outchannels / 4, outwidth, outheight, batch, ycval);

                                            QuaternionFilter2D gw = Reference(x, y, kwidth, kheight, stride);

                                            OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(inchannels, inwidth, inheight, batch), xval);
                                            OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map2D(outchannels, outwidth, outheight, batch), yval);

                                            OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel2D(inchannels, outchannels / 4, kwidth, kheight));

                                            QuaternionKernelProduct2D ope = new QuaternionKernelProduct2D(inwidth, inheight, inchannels, outchannels, kwidth, kheight, stride, transpose: false, batch);

                                            ope.Execute(x_tensor, y_tensor, gw_tensor);

                                            float[] gw_expect = gw.ToArray();
                                            float[] gw_actual = gw_tensor.State;

                                            CollectionAssert.AreEqual(xval, x_tensor.State);
                                            CollectionAssert.AreEqual(yval, y_tensor.State);

                                            AssertError.Tolerance(gw_expect, gw_actual, 1e-7f, 1e-5f, ref max_err, $"mismatch value {inchannels},{outchannels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch}");

                                            Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch}");
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }

            Console.WriteLine($"maxerr:{max_err}");
        }