//Apply the hinge rotation limit

    private Quat LimitHinge(Quat rotation)
    {
        // If limit is zero return rotation fixed to axis
        if (min == 0 && max == 0 && useLimits)
        {
            return(Quat.AngleAxis(0, axis));
        }

        // Get 1 degree of freedom rotation along axis
        Quat free1DOF = Limit1DOF(rotation, axis);

        if (!useLimits)
        {
            return(free1DOF);
        }

        // Get offset from last rotation in angle-axis representation
        Quat addR = free1DOF * Quat.Inverse(lastRotation);

        float addA = Quat.Angle(Quat.identity, addR);

        Vec3 secondaryAxis = new Vec3(axis.z, axis.x, axis.y);
        Vec3 cross         = secondaryAxis.CrossProduct(axis);

        if (cross.DotProduct(addR * secondaryAxis) > 0f)
        {
            addA = -addA;
        }

        // Clamp to limits
        lastAngle = Mathf.Clamp(lastAngle + addA, min, max);

        return(Quat.AngleAxis(lastAngle, axis));
    }
Esempio n. 2
0
        /// <summary>
        ///   <para>Rotates a rotation /from/ towards /to/.</para>
        /// </summary>
        /// <param name="from"></param>
        /// <param name="to"></param>
        /// <param name="maxDegreesDelta"></param>
        public static Quat RotateTowards(Quat from, Quat to, float maxDegreesDelta)
        {
            float num = Quat.Angle(from, to);

            if (num == 0f)
            {
                return(to);
            }
            float t = Mathf.Min(1f, maxDegreesDelta / num);

            return(Quat.SlerpUnclamped(from, to, t));
        }
Esempio n. 3
0
    public static Quat RotateTowards(Quat from, Quat to, float maxDegreesDelta)
    {
        float num = Quat.Angle(from, to);
        Quat  result;

        if (num == 0f)
        {
            result = to;
        }
        else
        {
            float t = Mathf.Min(1f, maxDegreesDelta / num);
            result = Quat.Slerp(from, to, t);
        }
        return(result);
    }
Esempio n. 4
0
        public void Quat4()
        {
            FQuat fq  = FQuat.Euler(( Fix64 )45, ( Fix64 )(-23), ( Fix64 )(-48.88));
            FQuat fq2 = FQuat.Euler(( Fix64 )23, ( Fix64 )(-78), ( Fix64 )(-132.43f));
            Quat  q   = Quat.Euler(45, -23, -48.88f);
            Quat  q2  = Quat.Euler(23, -78, -132.43f);
            FVec3 fv  = new FVec3(12.5f, 9, 8);
            FVec3 fv2 = new FVec3(1, 0, 0);
            Vec3  v   = new Vec3(12.5f, 9, 8);
            Vec3  v2  = new Vec3(1, 0, 0);

            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            this._output.WriteLine(fq2.ToString());
            this._output.WriteLine(q2.ToString());
            Fix64 fa = FQuat.Angle(fq, fq2);
            float a  = Quat.Angle(q, q2);

            this._output.WriteLine(fa.ToString());
            this._output.WriteLine(a.ToString());
            fq = FQuat.AngleAxis(( Fix64 )(-123.324), fv);
            q  = Quat.AngleAxis(-123.324f, v);
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            fa = FQuat.Dot(fq, fq2);
            a  = Quat.Dot(q, q2);
            this._output.WriteLine(fa.ToString());
            this._output.WriteLine(a.ToString());
            fq = FQuat.FromToRotation(FVec3.Normalize(fv), fv2);
            q  = Quat.FromToRotation(Vec3.Normalize(v), v2);
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            fq = FQuat.Lerp(fq, fq2, ( Fix64 )0.66);
            q  = Quat.Lerp(q, q2, 0.66f);
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            fq = FQuat.Normalize(fq);
            q.Normalize();
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            fq.Inverse();
            q = Quat.Inverse(q);
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            fv = FQuat.Orthogonal(fv);
            v  = Quat.Orthogonal(v);
            this._output.WriteLine(fv.ToString());
            this._output.WriteLine(v.ToString());
            fq = FQuat.Slerp(fq, fq2, ( Fix64 )0.66);
            q  = Quat.Slerp(q, q2, 0.66f);
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            fq = FQuat.LookRotation(FVec3.Normalize(fv), fv2);
            q  = Quat.LookRotation(Vec3.Normalize(v), v2);
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            fq.ToAngleAxis(out fa, out fv);
            q.ToAngleAxis(out a, out v);
            this._output.WriteLine(fa.ToString());
            this._output.WriteLine(a.ToString());
            this._output.WriteLine(fv.ToString());
            this._output.WriteLine(v.ToString());
            fq = fq.Conjugate();
            q  = q.Conjugate();
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
            fq.SetLookRotation(FVec3.Normalize(fv), fv2);
            q.SetLookRotation(Vec3.Normalize(v), v2);
            this._output.WriteLine(fq.ToString());
            this._output.WriteLine(q.ToString());
        }
Esempio n. 5
0
    // ApplyBoneOrientationConstraints and constrain rotations.
    public void Constrain(ref Matrix4x4[] jointOrientations, ref bool[] jointTracked)
    {
        // Constraints are defined as a vector with respect to the parent bone vector, and a constraint angle,
        // which is the maximum angle with respect to the constraint axis that the bone can move through.

        // Calculate constraint values. 0.0-1.0 means the bone is within the constraint cone. Greater than 1.0 means
        // it lies outside the constraint cone.
        for (int i = 0; i < this.jointConstraints.Count; i++)
        {
            BoneOrientationConstraint jc = this.jointConstraints[i];

            if (!jointTracked[i] || jc.joint == (int)NuiSkeletonPositionIndex.HipCenter)
            {
                // End joint is not tracked or Hip Center has no parent to perform this calculation with.
                continue;
            }

            // If the joint has a parent, constrain the bone direction to be within the constraint cone
            int parentIdx = GetSkeletonJointParent(jc.joint);

            // Local bone orientation relative to parent
            Matrix4x4 localOrientationMatrix = Invert(jointOrientations[parentIdx]) * jointOrientations[jc.joint];

            Vector3 localOrientationZ = (Vector3)localOrientationMatrix.GetColumn(2);
            Vector3 localOrientationY = (Vector3)localOrientationMatrix.GetColumn(1);
            if (localOrientationZ == Vector3.zero || localOrientationY == Vector3.zero)
            {
                continue;
            }

            Quat    localRotation = Quat.LookRotation(localOrientationZ, localOrientationY);
            Vector3 eulerAngles   = localRotation.eulerAngles;
            bool    isConstrained = false;

            //Matrix4x4 globalOrientationMatrix = jointOrientations[jc.joint];
            //Quaternion globalRotation = Quaternion.LookRotation(globalOrientationMatrix.GetColumn(2), globalOrientationMatrix.GetColumn(1));

            for (int a = 0; a < jc.axisConstrainrs.Count; a++)
            {
                AxisOrientationConstraint ac = jc.axisConstrainrs[a];

                Quat axisRotation = Quat.AngleAxis(localRotation.eulerAngles[ac.axis], ac.rotateAround);
                //Quaternion axisRotation = Quaternion.AngleAxis(globalRotation.eulerAngles[ac.axis], ac.rotateAround);
                float angleFromMin = Quat.Angle(axisRotation, quatToQuat2(ac.minQuaternion));
                float angleFromMax = Quat.Angle(axisRotation, quatToQuat2(ac.maxQuaternion));

                if (!(angleFromMin <= ac.angleRange && angleFromMax <= ac.angleRange))
                {
                    // Keep the current rotations around other axes and only
                    // correct the axis that has fallen out of range.
                    //Vector3 euler = globalRotation.eulerAngles;

                    if (angleFromMin > angleFromMax)
                    {
                        eulerAngles[ac.axis] = ac.angleMax;
                    }
                    else
                    {
                        eulerAngles[ac.axis] = ac.angleMin;
                    }

                    isConstrained = true;
                }
            }

            if (isConstrained)
            {
                Quat constrainedRotation = Quat.Euler(eulerAngles);

                // Put it back into the bone orientations
                localOrientationMatrix      = Transform(localOrientationMatrix, quatToQuat(constrainedRotation));
                jointOrientations[jc.joint] = jointOrientations[parentIdx] * localOrientationMatrix;
                //globalOrientationMatrix.SetTRS(Vector3.zero, constrainedRotation, Vector3.one);
                //jointOrientations[jc.joint] = globalOrientationMatrix;

                switch (jc.joint)
                {
                case (int)NuiSkeletonPositionIndex.ShoulderCenter:
                    jointOrientations[(int)NuiSkeletonPositionIndex.Head] = jointOrientations[jc.joint];
                    break;

                case (int)NuiSkeletonPositionIndex.WristLeft:
                    jointOrientations[(int)NuiSkeletonPositionIndex.HandLeft] = jointOrientations[jc.joint];
                    break;

                case (int)NuiSkeletonPositionIndex.WristRight:
                    jointOrientations[(int)NuiSkeletonPositionIndex.HandRight] = jointOrientations[jc.joint];
                    break;

                case (int)NuiSkeletonPositionIndex.AnkleLeft:
                    jointOrientations[(int)NuiSkeletonPositionIndex.FootLeft] = jointOrientations[jc.joint];
                    break;

                case (int)NuiSkeletonPositionIndex.AnkleRight:
                    jointOrientations[(int)NuiSkeletonPositionIndex.FootRight] = jointOrientations[jc.joint];
                    break;
                }
            }

//			globalRotation = Quaternion.LookRotation(globalOrientationMatrix.GetColumn(2), globalOrientationMatrix.GetColumn(1));
//			string stringToDebug = string.Format("{0}, {2}", (KinectWrapper.NuiSkeletonPositionIndex)jc.joint,
//				globalRotation.eulerAngles, localRotation.eulerAngles);
//			Debug.Log(stringToDebug);
//
//			if(debugText != null)
//				debugText.guiText.text = stringToDebug;
        }
    }