Esempio n. 1
0
        public ProbabilityTable sumOut(params IRandomVariable[] vars)
        {
            ISet <IRandomVariable> soutVars = CollectionFactory.CreateSet <IRandomVariable>(this.randomVarInfo.GetKeys());

            foreach (IRandomVariable rv in vars)
            {
                soutVars.Remove(rv);
            }
            ProbabilityTable summedOut = new ProbabilityTable(soutVars);

            if (1 == summedOut.getValues().Length)
            {
                summedOut.getValues()[0] = getSum();
            }
            else
            {
                // Otherwise need to iterate through this distribution
                // to calculate the summed out distribution.
                object[] termValues         = new object[summedOut.randomVarInfo.Size()];
                ProbabilityTableIterator di = new ProbabilityTableIteratorImpl(summedOut, termValues);

                iterateOverTable(di);
            }

            return(summedOut);
        }
Esempio n. 2
0
        // function ENUMERATION-ASK(X, e, bn) returns a distribution over X

        /**
         * The ENUMERATION-ASK algorithm in Figure 14.9 evaluates expression trees
         * (Figure 14.8) using depth-first recursion.
         *
         * @param X
         *            the query variables.
         * @param observedEvidence
         *            observed values for variables E.
         * @param bn
         *            a Bayes net with variables {X} &cup; E &cup; Y /* Y = hidden
         *            variables //
         * @return a distribution over the query variables.
         */
        public ICategoricalDistribution enumerationAsk(IRandomVariable[] X,
                                                       AssignmentProposition[] observedEvidence,
                                                       IBayesianNetwork bn)
        {
            // Q(X) <- a distribution over X, initially empty
            ProbabilityTable Q = new ProbabilityTable(X);
            ObservedEvidence e = new ObservedEvidence(X, observedEvidence, bn);

            // for each value x<sub>i</sub> of X do
            ProbabilityTable.ProbabilityTableIterator di = new ProbabilityTableIteratorImpl(bn, Q, e, X, this);
            Q.iterateOverTable(di);

            // return NORMALIZE(Q(X))
            return(Q.normalize());
        }