/// <exception cref="System.IO.IOException"/> /// <exception cref="System.TypeLoadException"/> public virtual ICounter <CandidatePhrase> LearnNewPhrases(string label, PatternsForEachToken patternsForEachToken, ICounter <E> patternsLearnedThisIter, ICounter <E> allSelectedPatterns, CollectionValuedMap <E, Triple <string, int, int> > tokensMatchedPatterns , ICounter <CandidatePhrase> scoreForAllWordsThisIteration, TwoDimensionalCounter <CandidatePhrase, E> terms, TwoDimensionalCounter <CandidatePhrase, E> wordsPatExtracted, TwoDimensionalCounter <E, CandidatePhrase> patternsAndWords4Label, string identifier, ICollection <CandidatePhrase> ignoreWords) { bool computeProcDataFreq = false; if (Data.processedDataFreq == null) { computeProcDataFreq = true; Data.processedDataFreq = new ClassicCounter <CandidatePhrase>(); System.Diagnostics.Debug.Assert(Data.rawFreq != null); } ICollection <CandidatePhrase> alreadyIdentifiedWords = new HashSet <CandidatePhrase>(constVars.GetLearnedWords(label).KeySet()); Sharpen.Collections.AddAll(alreadyIdentifiedWords, constVars.GetSeedLabelDictionary()[label]); ICounter <CandidatePhrase> words = LearnNewPhrasesPrivate(label, patternsForEachToken, patternsLearnedThisIter, allSelectedPatterns, alreadyIdentifiedWords, tokensMatchedPatterns, scoreForAllWordsThisIteration, terms, wordsPatExtracted, patternsAndWords4Label , identifier, ignoreWords, computeProcDataFreq); //constVars.addLabelDictionary(label, words.keySet()); return(words); }
/// <exception cref="System.IO.IOException"/> /// <exception cref="System.TypeLoadException"/> private ICounter <CandidatePhrase> LearnNewPhrasesPrivate(string label, PatternsForEachToken patternsForEachToken, ICounter <E> patternsLearnedThisIter, ICounter <E> allSelectedPatterns, ICollection <CandidatePhrase> alreadyIdentifiedWords, CollectionValuedMap <E, Triple <string, int, int> > matchedTokensByPat, ICounter <CandidatePhrase> scoreForAllWordsThisIteration, TwoDimensionalCounter <CandidatePhrase, E> terms, TwoDimensionalCounter <CandidatePhrase, E> wordsPatExtracted, TwoDimensionalCounter <E , CandidatePhrase> patternsAndWords4Label, string identifier, ICollection <CandidatePhrase> ignoreWords, bool computeProcDataFreq) { ICollection <CandidatePhrase> alreadyLabeledWords = new HashSet <CandidatePhrase>(); if (constVars.doNotApplyPatterns) { // if want to get the stats by the lossy way of just counting without // applying the patterns ConstantsAndVariables.DataSentsIterator sentsIter = new ConstantsAndVariables.DataSentsIterator(constVars.batchProcessSents); while (sentsIter.MoveNext()) { Pair <IDictionary <string, DataInstance>, File> sentsf = sentsIter.Current; this.StatsWithoutApplyingPatterns(sentsf.First(), patternsForEachToken, patternsLearnedThisIter, wordsPatExtracted); } } else { if (patternsLearnedThisIter.Size() > 0) { this.ApplyPats(patternsLearnedThisIter, label, wordsPatExtracted, matchedTokensByPat, alreadyLabeledWords); } } if (computeProcDataFreq) { if (!phraseScorer.wordFreqNorm.Equals(PhraseScorer.Normalization.None)) { Redwood.Log(Redwood.Dbg, "computing processed freq"); foreach (KeyValuePair <CandidatePhrase, double> fq in Data.rawFreq.EntrySet()) { double @in = fq.Value; if (phraseScorer.wordFreqNorm.Equals(PhraseScorer.Normalization.Sqrt)) { @in = Math.Sqrt(@in); } else { if (phraseScorer.wordFreqNorm.Equals(PhraseScorer.Normalization.Log)) { @in = 1 + Math.Log(@in); } else { throw new Exception("can't understand the normalization"); } } System.Diagnostics.Debug.Assert(!double.IsNaN(@in), "Why is processed freq nan when rawfreq is " + @in); Data.processedDataFreq.SetCount(fq.Key, @in); } } else { Data.processedDataFreq = Data.rawFreq; } } if (constVars.wordScoring.Equals(GetPatternsFromDataMultiClass.WordScoring.Weightednorm)) { foreach (CandidatePhrase en in wordsPatExtracted.FirstKeySet()) { if (!constVars.GetOtherSemanticClassesWords().Contains(en) && (en.GetPhraseLemma() == null || !constVars.GetOtherSemanticClassesWords().Contains(CandidatePhrase.CreateOrGet(en.GetPhraseLemma()))) && !alreadyLabeledWords.Contains(en)) { terms.AddAll(en, wordsPatExtracted.GetCounter(en)); } } RemoveKeys(terms, ConstantsAndVariables.GetStopWords()); ICounter <CandidatePhrase> phraseScores = phraseScorer.ScorePhrases(label, terms, wordsPatExtracted, allSelectedPatterns, alreadyIdentifiedWords, false); System.Console.Out.WriteLine("count for word U.S. is " + phraseScores.GetCount(CandidatePhrase.CreateOrGet("U.S."))); ICollection <CandidatePhrase> ignoreWordsAll; if (ignoreWords != null && !ignoreWords.IsEmpty()) { ignoreWordsAll = CollectionUtils.UnionAsSet(ignoreWords, constVars.GetOtherSemanticClassesWords()); } else { ignoreWordsAll = new HashSet <CandidatePhrase>(constVars.GetOtherSemanticClassesWords()); } Sharpen.Collections.AddAll(ignoreWordsAll, constVars.GetSeedLabelDictionary()[label]); Sharpen.Collections.AddAll(ignoreWordsAll, constVars.GetLearnedWords(label).KeySet()); System.Console.Out.WriteLine("ignoreWordsAll contains word U.S. is " + ignoreWordsAll.Contains(CandidatePhrase.CreateOrGet("U.S."))); ICounter <CandidatePhrase> finalwords = ChooseTopWords(phraseScores, terms, phraseScores, ignoreWordsAll, constVars.thresholdWordExtract); phraseScorer.PrintReasonForChoosing(finalwords); scoreForAllWordsThisIteration.Clear(); Counters.AddInPlace(scoreForAllWordsThisIteration, phraseScores); Redwood.Log(ConstantsAndVariables.minimaldebug, "\n\n## Selected Words for " + label + " : " + Counters.ToSortedString(finalwords, finalwords.Size(), "%1$s:%2$.2f", "\t")); if (constVars.goldEntities != null) { IDictionary <string, bool> goldEntities4Label = constVars.goldEntities[label]; if (goldEntities4Label != null) { StringBuilder s = new StringBuilder(); finalwords.KeySet().Stream().ForEach(null); Redwood.Log(ConstantsAndVariables.minimaldebug, "\n\n## Gold labels for selected words for label " + label + " : " + s.ToString()); } else { Redwood.Log(Redwood.Dbg, "No gold entities provided for label " + label); } } if (constVars.outDir != null && !constVars.outDir.IsEmpty()) { string outputdir = constVars.outDir + "/" + identifier + "/" + label; IOUtils.EnsureDir(new File(outputdir)); TwoDimensionalCounter <CandidatePhrase, CandidatePhrase> reasonForWords = new TwoDimensionalCounter <CandidatePhrase, CandidatePhrase>(); foreach (CandidatePhrase word in finalwords.KeySet()) { foreach (E l in wordsPatExtracted.GetCounter(word).KeySet()) { foreach (CandidatePhrase w2 in patternsAndWords4Label.GetCounter(l)) { reasonForWords.IncrementCount(word, w2); } } } Redwood.Log(ConstantsAndVariables.minimaldebug, "Saving output in " + outputdir); string filename = outputdir + "/words.json"; // the json object is an array corresponding to each iteration - of list // of objects, // each of which is a bean of entity and reasons IJsonArrayBuilder obj = Javax.Json.Json.CreateArrayBuilder(); if (writtenInJustification.Contains(label) && writtenInJustification[label]) { IJsonReader jsonReader = Javax.Json.Json.CreateReader(new BufferedInputStream(new FileInputStream(filename))); IJsonArray objarr = jsonReader.ReadArray(); foreach (IJsonValue o in objarr) { obj.Add(o); } jsonReader.Close(); } IJsonArrayBuilder objThisIter = Javax.Json.Json.CreateArrayBuilder(); foreach (CandidatePhrase w in reasonForWords.FirstKeySet()) { IJsonObjectBuilder objinner = Javax.Json.Json.CreateObjectBuilder(); IJsonArrayBuilder l = Javax.Json.Json.CreateArrayBuilder(); foreach (CandidatePhrase w2 in reasonForWords.GetCounter(w).KeySet()) { l.Add(w2.GetPhrase()); } IJsonArrayBuilder pats = Javax.Json.Json.CreateArrayBuilder(); foreach (E p in wordsPatExtracted.GetCounter(w)) { pats.Add(p.ToStringSimple()); } objinner.Add("reasonwords", l); objinner.Add("patterns", pats); objinner.Add("score", finalwords.GetCount(w)); objinner.Add("entity", w.GetPhrase()); objThisIter.Add(objinner.Build()); } obj.Add(objThisIter); // Redwood.log(ConstantsAndVariables.minimaldebug, channelNameLogger, // "Writing justification at " + filename); IOUtils.WriteStringToFile(StringUtils.Normalize(StringUtils.ToAscii(obj.Build().ToString())), filename, "ASCII"); writtenInJustification[label] = true; } if (constVars.justify) { Redwood.Log(Redwood.Dbg, "\nJustification for phrases:\n"); foreach (CandidatePhrase word in finalwords.KeySet()) { Redwood.Log(Redwood.Dbg, "Phrase " + word + " extracted because of patterns: \t" + Counters.ToSortedString(wordsPatExtracted.GetCounter(word), wordsPatExtracted.GetCounter(word).Size(), "%1$s:%2$f", "\n")); } } // if (usePatternResultAsLabel) // if (answerLabel != null) // labelWords(sents, commonEngWords, finalwords.keySet(), // patterns.keySet(), outFile); // else // throw new RuntimeException("why is the answer label null?"); return(finalwords); } else { if (constVars.wordScoring.Equals(GetPatternsFromDataMultiClass.WordScoring.Bpb)) { Counters.AddInPlace(terms, wordsPatExtracted); ICounter <CandidatePhrase> maxPatWeightTerms = new ClassicCounter <CandidatePhrase>(); IDictionary <CandidatePhrase, E> wordMaxPat = new Dictionary <CandidatePhrase, E>(); foreach (KeyValuePair <CandidatePhrase, ClassicCounter <E> > en in terms.EntrySet()) { ICounter <E> weights = new ClassicCounter <E>(); foreach (E k in en.Value.KeySet()) { weights.SetCount(k, patternsLearnedThisIter.GetCount(k)); } maxPatWeightTerms.SetCount(en.Key, Counters.Max(weights)); wordMaxPat[en.Key] = Counters.Argmax(weights); } Counters.RemoveKeys(maxPatWeightTerms, alreadyIdentifiedWords); double maxvalue = Counters.Max(maxPatWeightTerms); ICollection <CandidatePhrase> words = Counters.KeysAbove(maxPatWeightTerms, maxvalue - 1e-10); CandidatePhrase bestw = null; if (words.Count > 1) { double max = double.NegativeInfinity; foreach (CandidatePhrase w in words) { if (terms.GetCount(w, wordMaxPat[w]) > max) { max = terms.GetCount(w, wordMaxPat[w]); bestw = w; } } } else { if (words.Count == 1) { bestw = words.GetEnumerator().Current; } else { return(new ClassicCounter <CandidatePhrase>()); } } Redwood.Log(ConstantsAndVariables.minimaldebug, "Selected Words: " + bestw); return(Counters.AsCounter(Arrays.AsList(bestw))); } else { throw new Exception("wordscoring " + constVars.wordScoring + " not identified"); } } }
/* * public void applyPats(Counter<E> patterns, String label, boolean computeDataFreq, TwoDimensionalCounter<Pair<String, String>, Integer> wordsandLemmaPatExtracted, * CollectionValuedMap<Integer, Triple<String, Integer, Integer>> matchedTokensByPat) throws ClassNotFoundException, IOException, InterruptedException, ExecutionException{ * Counter<E> patternsLearnedThisIterConsistsOnlyGeneralized = new ClassicCounter<E>(); * Counter<E> patternsLearnedThisIterRest = new ClassicCounter<E>(); * Set<String> specialWords = constVars.invertedIndex.getSpecialWordsList(); * List<String> extremelySmallStopWordsList = Arrays.asList(".",",","in","on","of","a","the","an"); * * for(Entry<Integer, Double> en: patterns.entrySet()){ * Integer pindex = en.getKey(); * SurfacePattern p = constVars.getPatternIndex().get(pindex); * String[] n = p.getSimplerTokensNext(); * String[] pr = p.getSimplerTokensPrev(); * boolean rest = false; * if(n!=null){ * for(String e: n){ * if(!specialWords.contains(e)){ * rest = true; * break; * } * } * } * if(rest == false && pr!=null){ * for(String e: pr){ * if(!specialWords.contains(e) && !extremelySmallStopWordsList.contains(e)){ * rest = true; * break; * } * } * } * if(rest) * patternsLearnedThisIterRest.setCount(en.getKey(), en.getValue()); * else * patternsLearnedThisIterConsistsOnlyGeneralized.setCount(en.getKey(), en.getValue()); * } * * * * Map<String, Set<String>> sentidswithfilerest = constVars.invertedIndex.getFileSentIdsFromPats(patternsLearnedThisIterRest.keySet(), constVars.getPatternIndex()); * * if (constVars.batchProcessSents) { * List<File> filesToLoad; * if(patternsLearnedThisIterConsistsOnlyGeneralized.size() > 0) * filesToLoad = Data.sentsFiles; * else{ * filesToLoad = new ArrayList<File>(); * for (String fname : sentidswithfilerest.keySet()) { * String filename; * // if(!constVars.usingDirForSentsInIndex) * // filename = constVars.saveSentencesSerDir+"/"+fname; * // else * filename = fname; * filesToLoad.add(new File(filename)); * } * } * * for (File fname : filesToLoad) { * Redwood.log(Redwood.DBG, "Applying patterns to sents from " + fname); * Map<String, List<CoreLabel>> sents = IOUtils.readObjectFromFile(fname); * * if(sentidswithfilerest != null && !sentidswithfilerest.isEmpty()){ * * String filename; * // if(constVars.usingDirForSentsInIndex) * // filename = constVars.saveSentencesSerDir+"/"+fname.getName(); * // else * filename = fname.getAbsolutePath(); * * Set<String> sentIDs = sentidswithfilerest.get(filename); * if (sentIDs != null){ * this.runParallelApplyPats(sents, sentIDs, label, patternsLearnedThisIterRest, wordsandLemmaPatExtracted, matchedTokensByPat); * } else * Redwood.log(Redwood.DBG, "No sentIds for " + filename + " in the index for the keywords from the patterns! The index came up with these files: " + sentidswithfilerest.keySet()); * } * if(patternsLearnedThisIterConsistsOnlyGeneralized.size() > 0){ * this.runParallelApplyPats(sents, sents.keySet(), label, patternsLearnedThisIterConsistsOnlyGeneralized, wordsandLemmaPatExtracted, matchedTokensByPat); * } * * if (computeDataFreq){ * Data.computeRawFreqIfNull(sents, constVars.numWordsCompound); * Data.fileNamesUsedToComputeRawFreq.add(fname.getName()); * } * } * * //Compute Frequency from the files not loaded using the invertedindex query. otherwise, later on there is an error. * if(computeDataFreq){ * for(File f: Data.sentsFiles){ * if(!Data.fileNamesUsedToComputeRawFreq.contains(f.getName())){ * Map<String, List<CoreLabel>> sents = IOUtils.readObjectFromFile(f); * Data.computeRawFreqIfNull(sents, constVars.numWordsCompound); * Data.fileNamesUsedToComputeRawFreq.add(f.getName()); * } * } * } * * } else { * * if (sentidswithfilerest != null && !sentidswithfilerest.isEmpty()) { * String filename = CollectionUtils.toList(sentidswithfilerest.keySet()).get(0); * Set<String> sentids = sentidswithfilerest.get(filename); * if (sentids != null) { * this.runParallelApplyPats(Data.sents, sentids, label, patternsLearnedThisIterRest, wordsandLemmaPatExtracted, matchedTokensByPat); * } else * throw new RuntimeException("How come no sentIds for " + filename + ". Index keyset is " + constVars.invertedIndex.getKeySet()); * } * if(patternsLearnedThisIterConsistsOnlyGeneralized.size() > 0){ * this.runParallelApplyPats(Data.sents, Data.sents.keySet(), label, patternsLearnedThisIterConsistsOnlyGeneralized, wordsandLemmaPatExtracted, matchedTokensByPat); * } * Data.computeRawFreqIfNull(Data.sents, constVars.numWordsCompound); * } * Redwood.log(Redwood.DBG, "# words/lemma and pattern pairs are " + wordsandLemmaPatExtracted.size()); * } */ private void StatsWithoutApplyingPatterns(IDictionary <string, DataInstance> sents, PatternsForEachToken patternsForEachToken, ICounter <E> patternsLearnedThisIter, TwoDimensionalCounter <CandidatePhrase, E> wordsandLemmaPatExtracted) { foreach (KeyValuePair <string, DataInstance> sentEn in sents) { IDictionary <int, ICollection <E> > pat4Sent = patternsForEachToken.GetPatternsForAllTokens(sentEn.Key); if (pat4Sent == null) { throw new Exception("How come there are no patterns for " + sentEn.Key); } foreach (KeyValuePair <int, ICollection <E> > en in pat4Sent) { CoreLabel token = null; ICollection <E> p1 = en.Value; // Set<Integer> p1 = en.getValue().first(); // Set<Integer> p2 = en.getValue().second(); // Set<Integer> p3 = en.getValue().third(); foreach (E index in patternsLearnedThisIter.KeySet()) { if (p1.Contains(index)) { if (token == null) { token = sentEn.Value.GetTokens()[en.Key]; } wordsandLemmaPatExtracted.IncrementCount(CandidatePhrase.CreateOrGet(token.Word(), token.Lemma()), index); } } } } }