public MPIGreedyCD(Intracommunicator comm, Rectangle totalSize, Rectangle imageSection, float[,] psf)
 {
     this.comm         = comm;
     this.imageSection = imageSection;
     psf2 = PSF.CalcPSFSquared(psf);
     aMap = PSF.CalcAMap(psf, totalSize, imageSection);
 }
        /// <summary>
        ///
        /// </summary>
        /// <param name="totalSize"></param>
        /// <param name="psf"></param>
        /// <param name="processorCount">Number of async. processors to use</param>
        /// <param name="concurrentIterations">Number of async iterations each processor performs in one active set iteration</param>
        /// <param name="searchFraction"></param>
        public ParallelCoordinateDescent(Rectangle totalSize, float[,] psf, int processorCount = 8, int concurrentIterations = 1000, float searchFraction = 0.1f)
        {
            this.totalSize = totalSize;
            this.psf       = psf;
            this.psf2      = PSF.CalcPSFSquared(psf);
            this.aMap      = PSF.CalcAMap(psf, totalSize);

            this.processorCount       = processorCount;
            this.concurrentIterations = concurrentIterations;
            this.searchFraction       = searchFraction;
        }
        public ApproxFast(Rectangle totalSize, float[,] psf, int threadCount, int blockSize, float randomFraction, float searchFraction, bool useCDColdStart, bool useAcceleration = true, bool useRestarting = true)
        {
            this.totalSize = totalSize;
            this.psf       = psf;
            this.psf2      = PSF.CalcPSFSquared(psf);
            MaxLipschitz   = (float)PSF.CalcMaxLipschitz(psf);
            this.aMap      = PSF.CalcAMap(psf, totalSize);

            this.threadCount     = threadCount;
            this.blockSize       = blockSize;
            this.randomFraction  = randomFraction;
            this.searchFraction  = searchFraction;
            this.useAcceleration = useAcceleration;
            this.useRestarting   = useRestarting;
        }
        public void ResetLipschitzMap(float[,] psf)
        {
            var psf2Local = PSF.CalcPSFSquared(psf);
            var maxFull   = Residuals.GetMax(psf2Local);

            MaxLipschitz = maxFull;
            aMap         = PSF.CalcAMap(psf, patch);

            var maxCut = Residuals.GetMax(psf2);

            for (int i = 0; i < psf2.GetLength(0); i++)
            {
                for (int j = 0; j < psf2.GetLength(1); j++)
                {
                    psf2[i, j] *= (maxFull / maxCut);
                }
            }
        }
        public void ResetAMap(float[,] psf)
        {
            var psf2Local = PSF.CalcPSFSquared(psf);
            var maxFull   = Residuals.GetMax(psf2Local);

            aMap     = PSF.CalcAMap(psf, totalSize);
            this.psf = psf;

            var maxCut = Residuals.GetMax(psf2);

            for (int i = 0; i < psf2.GetLength(0); i++)
            {
                for (int j = 0; j < psf2.GetLength(1); j++)
                {
                    psf2[i, j] *= (maxFull / maxCut);
                }
            }
        }
        public bool DeconvolveApprox(float[,] xImage, float[,] residuals, float[,] psf, float lambda, float alpha, Random random, int blockSize, int threadCount, int maxIteration = 100, float epsilon = 1e-4f, bool coldStart = false)
        {
            var xExplore    = Copy(xImage);
            var xCorrection = new float[xImage.GetLength(0), xImage.GetLength(1)];

            //calculate gradients for each pixel
            var PSFCorr     = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, residuals.GetLength(0), residuals.GetLength(1)));
            var gExplore    = Residuals.CalcGradientMap(residuals, PSFCorr, new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
            var gCorrection = new float[residuals.GetLength(0), residuals.GetLength(1)];
            var psf2        = PSF.CalcPSFSquared(psf);

            if (coldStart)
            {
                var rec    = new Rectangle(0, 0, xImage.GetLength(0), xImage.GetLength(1));
                var fastCD = new FastSerialCD(rec, rec, psf, psf2);
                fastCD.Deconvolve(xExplore, gExplore, lambda, alpha, xImage.GetLength(0));
            }

            yBlockSize           = blockSize;
            xBlockSize           = blockSize;
            degreeOfSeperability = CountNonZero(psf);
            tau = threadCount; //number of processors
            var maxLipschitz = (float)PSF.CalcMaxLipschitz(psf);
            var activeSet    = GetActiveSet(xExplore, gExplore, lambda, alpha, maxLipschitz);

            var theta = DeconvolveAccelerated(xExplore, xCorrection, gExplore, gCorrection, psf2, ref activeSet, maxLipschitz, lambda, alpha, random, maxIteration, epsilon);

            var theta0   = tau / (float)activeSet.Count;
            var tmpTheta = theta < 1.0f ? ((theta * theta) / (1.0f - theta)) : theta0;

            for (int i = 0; i < xImage.GetLength(0); i++)
            {
                for (int j = 0; j < xImage.GetLength(1); j++)
                {
                    xCorrection[i, j] = tmpTheta * xCorrection[i, j] + xExplore[i, j];
                }
            }

            var objectives = CalcObjectives(xImage, residuals, psf, xExplore, xCorrection, lambda, alpha);

            //decide whether we take the correction or explore version
            if (objectives.Item2 < objectives.Item1)
            {
                //correction has the lower objective than explore
                for (int i = 0; i < xImage.GetLength(0); i++)
                {
                    for (int j = 0; j < xImage.GetLength(1); j++)
                    {
                        xImage[i, j] = xCorrection[i, j];
                    }
                }
            }
            else
            {
                for (int i = 0; i < xImage.GetLength(0); i++)
                {
                    for (int j = 0; j < xImage.GetLength(1); j++)
                    {
                        xImage[i, j] = xExplore[i, j];
                    }
                }
            }

            return(objectives.Item2 < objectives.Item1);
        }
Esempio n. 7
0
        public static void GeneratePSFs(string simulatedLocation, string outputFolder)
        {
            var data     = MeasurementData.LoadSimulatedPoints(simulatedLocation);
            var c        = MeasurementData.CreateSimulatedStandardParams(data.VisibilitiesCount);
            var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies);

            var psfGrid = IDG.GridPSF(c, metadata, data.UVW, data.Flags, data.Frequencies);
            var psf     = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount);

            FFT.Shift(psf);

            Directory.CreateDirectory(outputFolder);

            var maskedPsf = Copy(psf);

            Tools.Mask(maskedPsf, 2);
            var reverseMasked = Copy(psf);

            Tools.ReverseMask(reverseMasked, 2);
            var psf2    = PSF.CalcPSFSquared(psf);
            var psf2Cut = PSF.CalcPSFSquared(maskedPsf);

            Tools.WriteToMeltCSV(psf, Path.Combine(outputFolder, "psf.csv"));
            Tools.WriteToMeltCSV(maskedPsf, Path.Combine(outputFolder, "psfCut.csv"));
            Tools.WriteToMeltCSV(reverseMasked, Path.Combine(outputFolder, "psfReverseCut.csv"));
            Tools.WriteToMeltCSV(psf2, Path.Combine(outputFolder, "psfSquared.csv"));
            Tools.WriteToMeltCSV(psf2Cut, Path.Combine(outputFolder, "psfSquaredCut.csv"));

            var x = new float[c.GridSize, c.GridSize];

            x[10, 10] = 1.0f;

            var convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));
            var corrKernel = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, c.GridSize, c.GridSize));

            using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, c.GridSize, c.GridSize)))
                using (var correlator = new PaddedConvolver(corrKernel, new Rectangle(0, 0, c.GridSize, c.GridSize)))
                {
                    var zeroPadded = convolver.Convolve(x);
                    var psf2Edge   = correlator.Convolve(zeroPadded);
                    Tools.WriteToMeltCSV(zeroPadded, Path.Combine(outputFolder, "psfZeroPadding.csv"));
                    Tools.WriteToMeltCSV(psf2Edge, Path.Combine(outputFolder, "psfSquaredEdge.csv"));
                }
            convKernel = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, 0, 0));
            using (var convolver = new PaddedConvolver(convKernel, new Rectangle(0, 0, 0, 0)))
                Tools.WriteToMeltCSV(convolver.Convolve(x), Path.Combine(outputFolder, "psfCircular.csv"));

            //================================================= Reconstruct =============================================================
            var totalSize      = new Rectangle(0, 0, c.GridSize, c.GridSize);
            var reconstruction = new float[c.GridSize, c.GridSize];
            var fastCD         = new FastSerialCD(totalSize, psf);
            var lambda         = 0.50f * fastCD.MaxLipschitz;
            var alpha          = 0.2f;

            var residualVis = data.Visibilities;

            for (int cycle = 0; cycle < 5; cycle++)
            {
                Console.WriteLine("in cycle " + cycle);
                var dirtyGrid  = IDG.Grid(c, metadata, residualVis, data.UVW, data.Frequencies);
                var dirtyImage = FFT.BackwardFloat(dirtyGrid, c.VisibilitiesCount);
                FFT.Shift(dirtyImage);

                var gradients = Residuals.CalcGradientMap(dirtyImage, corrKernel, totalSize);

                if (cycle == 0)
                {
                    Tools.WriteToMeltCSV(dirtyImage, Path.Combine(outputFolder, "dirty.csv"));
                    Tools.WriteToMeltCSV(gradients, Path.Combine(outputFolder, "gradients.csv"));
                }

                fastCD.Deconvolve(reconstruction, gradients, lambda, alpha, 10000, 1e-5f);

                FFT.Shift(reconstruction);
                var xGrid = FFT.Forward(reconstruction);
                FFT.Shift(reconstruction);
                var modelVis = IDG.DeGrid(c, metadata, xGrid, data.UVW, data.Frequencies);
                residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags);
            }

            //FitsIO.Write(reconstruction, Path.Combine(outputFolder,"xImage.fits"));
            Tools.WriteToMeltCSV(reconstruction, Path.Combine(outputFolder, "elasticNet.csv"));
        }
        public bool DeconvolveGreedy(float[,] xImage, float[,] residuals, float[,] psf, float lambda, float alpha, Random random, int blockSize, int threadCount, int maxIteration = 100, float epsilon = 1e-4f)
        {
            var xExplore    = Copy(xImage);
            var xCorrection = new float[xImage.GetLength(0), xImage.GetLength(1)];

            var PSFCorr = PSF.CalcPaddedFourierCorrelation(psf, new Rectangle(0, 0, residuals.GetLength(0), residuals.GetLength(1)));

            //calculate gradients for each pixel
            var gExplore    = Residuals.CalcGradientMap(residuals, PSFCorr, new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
            var gCorrection = new float[residuals.GetLength(0), residuals.GetLength(1)];
            var psf2        = PSF.CalcPSFSquared(psf);

            FitsIO.Write(gExplore, "gExplore.fits");

            yBlockSize           = blockSize;
            xBlockSize           = blockSize;
            degreeOfSeperability = CountNonZero(psf);
            tau = threadCount; //number of processors
            var maxLipschitz = (float)PSF.CalcMaxLipschitz(psf);

            var theta = Greedy(xExplore, xCorrection, gExplore, gCorrection, psf2, maxLipschitz, lambda, alpha, random, maxIteration, epsilon);

            //decide which version should be taken#
            var CONVKernel          = PSF.CalcPaddedFourierConvolution(psf, new Rectangle(0, 0, residuals.GetLength(0), residuals.GetLength(1)));
            var residualsCalculator = new PaddedConvolver(CONVKernel, new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)));
            var theta0   = tau / (float)(xExplore.Length / (yBlockSize * xBlockSize));
            var tmpTheta = theta < 1.0f ? ((theta * theta) / (1.0f - theta)) : theta0;

            //calculate residuals
            var residualsExplore     = Copy(xExplore);
            var residualsAccelerated = Copy(xExplore);

            for (int i = 0; i < xImage.GetLength(0); i++)
            {
                for (int j = 0; j < xImage.GetLength(1); j++)
                {
                    residualsExplore[i, j]     -= xImage[i, j];
                    residualsAccelerated[i, j] += tmpTheta * xCorrection[i, j] - xImage[i, j];
                    xCorrection[i, j]           = tmpTheta * xCorrection[i, j] + xExplore[i, j];
                }
            }

            FitsIO.Write(xExplore, "xExplore.fits");
            FitsIO.Write(xCorrection, "xAcc.fits");

            residualsCalculator.ConvolveInPlace(residualsExplore);
            residualsCalculator.ConvolveInPlace(residualsAccelerated);
            for (int i = 0; i < xImage.GetLength(0); i++)
            {
                for (int j = 0; j < xImage.GetLength(1); j++)
                {
                    residualsExplore[i, j]     -= residuals[i, j];
                    residualsAccelerated[i, j] -= residuals[i, j];
                }
            }

            var objectiveExplore = Residuals.CalcPenalty(residualsExplore) + ElasticNet.CalcPenalty(xExplore, lambda, alpha);
            var objectiveAcc     = Residuals.CalcPenalty(residualsAccelerated) + ElasticNet.CalcPenalty(xCorrection, lambda, alpha);

            if (objectiveAcc < objectiveExplore)
            {
                for (int i = 0; i < xImage.GetLength(0); i++)
                {
                    for (int j = 0; j < xImage.GetLength(1); j++)
                    {
                        xImage[i, j] = xCorrection[i, j];
                    }
                }
            }
            else
            {
                for (int i = 0; i < xImage.GetLength(0); i++)
                {
                    for (int j = 0; j < xImage.GetLength(1); j++)
                    {
                        xImage[i, j] = xExplore[i, j];
                    }
                }
            }

            return(objectiveAcc < objectiveExplore);
        }
 public FastSerialCD(Rectangle totalSize, float[,] psf, int processorLimit = -1) :
     this(totalSize, totalSize, psf, PSF.CalcPSFSquared(psf), processorLimit)
 {
 }
 public GPUSerialCD(Rectangle totalSize, float[,] psf, int nrBatchIterations) :
     this(totalSize, psf, PSF.CalcPSFSquared(psf), nrBatchIterations)
 {
 }
Esempio n. 11
0
        private static ReconstructionInfo Reconstruct(Data input, float fullLipschitz, float[,] maskedPsf, string folder, float maskFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon, bool maskPsf2)
        {
            var info      = new ReconstructionInfo();
            var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize);

            var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(maskedPsf, totalSize), new Rectangle(0, 0, maskedPsf.GetLength(0), maskedPsf.GetLength(1)));
            var maskedPsf2     = PSF.CalcPSFSquared(maskedPsf);

            if (maskPsf2)
            {
                Mask(maskedPsf2, 1e-5f);
            }
            writer.WriteLine((CountNonZero(maskedPsf2) - maskedPsf2.Length) / (double)maskedPsf2.Length);
            var fastCD = new FastSerialCD(totalSize, totalSize, maskedPsf, maskedPsf2);

            FitsIO.Write(maskedPsf, folder + maskFactor + "psf.fits");



            var lambda     = 0.4f * fastCD.MaxLipschitz;
            var lambdaTrue = 0.4f * fullLipschitz;
            var alpha      = 0.1f;

            var xImage      = new float[input.c.GridSize, input.c.GridSize];
            var residualVis = input.visibilities;
            DeconvolutionResult lastResult = null;

            for (int cycle = 0; cycle < maxMajor; cycle++)
            {
                Console.WriteLine("cycle " + cycle);
                var dirtyGrid  = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies);
                var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount);
                FFT.Shift(dirtyImage);
                FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits");

                //calc data and reg penalty
                var dataPenalty       = Residuals.CalcPenalty(dirtyImage);
                var regPenalty        = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha);
                var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha);
                info.lastDataPenalty = dataPenalty;
                info.lastRegPenalty  = regPenalty;

                bMapCalculator.ConvolveInPlace(dirtyImage);
                //FitsIO.Write(dirtyImage, folder + dirtyPrefix + "bmap_" + cycle + ".fits");
                var currentLambda = lambda;

                writer.Write(cycle + ";" + currentLambda + ";" + Residuals.GetMax(dirtyImage) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";");
                writer.Flush();

                //check wether we can minimize the objective further with the current psf
                var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff;
                var minimumReached   = (lastResult != null && lastResult.IterationCount < 100 && lastResult.Converged);
                if (!objectiveReached & !minimumReached)
                {
                    info.totalDeconv.Start();
                    lastResult = fastCD.Deconvolve(xImage, dirtyImage, currentLambda, alpha, 50000, epsilon);
                    info.totalDeconv.Stop();

                    FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits");
                    writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n");
                    writer.Flush();

                    FFT.Shift(xImage);
                    var xGrid = FFT.Forward(xImage);
                    FFT.Shift(xImage);
                    var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies);
                    residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags);
                }
                else
                {
                    writer.Write(false + ";0;0");
                    writer.Flush();
                    break;
                }
            }

            return(info);
        }