Esempio n. 1
0
        public static PNM ApplyHoughRectanglesDetector(this PNM image, int dmax = 60, int dmin = 13)
        {
            PNM    workImage = PNM.Copy(image).ApplyCannyDetector();
            double maxR      = Math.Sqrt(Math.Pow(image.Width / 2d, 2) + Math.Pow(image.Height / 2d, 2));
            int    padding   = Math.Max((dmax + (dmax % 2)) / 2, (dmin + (dmin % 2)) / 2);

            workImage.raster  = Filter.PadWithZeros(workImage.raster, image.Width * 3, image.Height, padding * 3, padding);
            workImage.Width  += padding * 2;
            workImage.Height += padding * 2;
            int maxW = (int)Math.Ceiling(maxR);

            bool[] circleMask = GenerateCircleMask(dmax, dmin);
            int    imageSize  = image.Width * image.Height;

            IEnumerable <Tuple <float, float>[]>[] allRectangles = new IEnumerable <Tuple <float, float>[]> [image.Width];
            Parallel.For(0, image.Width, i =>
                         //for (int i = 0; i < image.Width; i++)
            {
                allRectangles[i] = Enumerable.Range(0, image.Height).Select(j =>
                {
                    int center = workImage.Width * (padding + (int)j) + padding + i;
                    var masked = MaskedHoughVote(workImage, center, circleMask, dmax, dmin, padding);
                    return(masked);
                }).SelectMany(x => x).ToArray();
                //}
            });
            return(DrawRectangles(image, allRectangles.SelectMany(x => x).ToArray()));
        }
Esempio n. 2
0
        public static PNM ApplyHoughDetector(this PNM image)
        {
            // greyscale, edge detection, thresholding
            PNM workImage = PNM.Copy(image).ApplyPointProcessing(Color.ToGrayscale)
                            .ApplyGradientEdgesDetection()
                            .ApplyPointProcessing(Thresholding.Entropy(image));
            IEnumerable <Tuple <Point, Point> > lines = GenerateHoughLines(workImage);

            return(DrawLines(image, lines));
        }
Esempio n. 3
0
        public static PNM ApplyZeroCrossingDetector(this PNM image)
        {
            // preprare
            PNM workImage = PNM.Copy(image);

            Filter.Pad(workImage, 4);
            // apply loG
            Tuple <float[], float[], float[]> LoGRaster = Filter.ApplyConvolutionUnbound(workImage, LoG, 9);
            PNM returnImage = new PNM(image.Width, image.Height);

            // Apply zero crossing except last row and last column
            Parallel.For(0, image.Height - 1, i =>
            {
                for (int j = 0; j < image.Width - 1; j++)
                {
                    byte r = 0;
                    byte g = 0;
                    byte b = 0;
                    // current index position
                    int position     = i * image.Width + j;
                    float currentR   = LoGRaster.Item1[position];
                    float neighbourR = LoGRaster.Item1[position + image.Width + 1];
                    float currentG   = LoGRaster.Item2[position];
                    float neighbourG = LoGRaster.Item2[position + image.Width + 1];
                    float currentB   = LoGRaster.Item3[position];
                    float neighbourB = LoGRaster.Item3[position + image.Width + 1];
                    if ((currentR * neighbourR) < 0 && (Math.Abs(currentR) < Math.Abs(neighbourR)))
                    {
                        r = 255;
                    }
                    if ((currentG * neighbourG) < 0 && (Math.Abs(currentG) < Math.Abs(neighbourG)))
                    {
                        g = 255;
                    }
                    if ((currentB * neighbourB) < 0 && (Math.Abs(currentB) < Math.Abs(neighbourB)))
                    {
                        b = 255;
                    }

                    returnImage.SetPixel(position, r, g, b);
                }
            });
            return(returnImage);
        }