private void PrintOutputGraph_1stOfEach() { var input = new PointCollection(); var output = new PointCollection(); var expected = new PointCollection(); for (var i = 0; i < _trainingData["Inputs"].Count; i++) { input.Add(new Point(i, _trainingData["Inputs"][i][0])); output.Add(new Point(i, _nn.GenerateOutput(_trainingData["Inputs"][i])[0])); expected.Add(new Point(i, _trainingData["Outputs"][i][0])); } OutputPlot.LineThickness = 2.5; OutputPlot.ScaleXAxis = true; OutputPlot.Add("Input", input, Colors.Black); OutputPlot.Add("Expected", expected, Colors.White); OutputPlot.Add("Output", output, Colors.Purple); }
private void TestNN() { var testingData = new List <List <double> >(); var testingDataJson = Common.GetJsonFromFile(); foreach (JArray testSet in testingDataJson["Inputs"]) { var ts = new List <double>(); for (var i = 0; i < testSet.Count(); ++i) { ts.Add(testSet[i].Value <double>()); } testingData.Add(ts); } _trainingDataMeta = testingDataJson["Meta"] as JObject; var outputOffset = _trainingDataMeta["OutputOffset"].Value <int>(); var outputSize = _trainingDataMeta["OutputSize"].Value <int>(); var inputSize = _trainingDataMeta["InputSize"].Value <int>(); var inputPoints = new PointCollection(); var outputPoints = new PointCollection(); for (var i = 0; i < testingData.Count; i++) { for (var j = 0; j < inputSize; ++j) { var input = testingData[i][j]; var output = j < outputSize?_nn.GenerateOutput(testingData[i])[j] : 0; inputPoints.Add(new Point(i * inputSize + j, input)); outputPoints.Add(new Point(i * inputSize + j + outputOffset, output)); } } OutputPlot.Clear(); OutputPlot.LineThickness = 2.5; OutputPlot.ScaleXAxis = true; OutputPlot.Add("Input", inputPoints, Colors.White); OutputPlot.Add("Output", outputPoints, Colors.Purple); }
private void XOnDataAvailable(object sender, WaveInEventArgs e) { var spectrum_cp = new PointCollection(); var buff = new double[1024]; for (var i = 0; i < buff.Length; ++i) { buff[i] = e.Buffer[i]; } var spectrum = DSP.FourierTransform.Spectrum(ref buff); for (var i = 0; i < spectrum.Length; ++i) { spectrum_cp.Add(new Point(i, spectrum[i])); } OutputPlot.Add("Spectrum", spectrum_cp, Colors.White); }
private async Task ShowStock(string stock) { try { var mongo = new MongoClient("mongodb://localhost:27017"); var db = mongo.GetDatabase("traiding_data"); var stockCollections = new List <string>(); using (var cursor = await db.ListCollectionNamesAsync()) { await cursor.ForEachAsync(d => stockCollections.Add(d.ToString())); } if (!stockCollections.Contains(stock)) { MessageBox.Show($"{stock} collection doesn't exist!"); return; } var collection = db.GetCollection <StockData>(stock); var res = (from c in collection.AsQueryable() orderby c.Date descending select c).ToList(); var pc = new PointCollection(); for (var i = 0; i < res.Count; ++i) { pc.Add(new Point(i, res[i].Close - res[i].Low)); } OutputPlot.Clear(); OutputPlot.Add(stock, pc, Colors.White); MainTabControl_tc.SelectedItem = OutputGraph_Tab_ti; } catch (Exception e) { Console.WriteLine(e); throw; } }
private void PrintOutputGraph_AllOfEach() { var outputOffset = _trainingDataMeta["OutputOffset"].Value <int>(); var input = new PointCollection(); var output = new PointCollection(); var expected = new PointCollection(); var sampleCount = _trainingData["Inputs"].Count; for (var i = 0; i < sampleCount; i++) { var inputSize = _trainingData["Inputs"][i].Count; var outputSize = _trainingData["Outputs"][i].Count; for (var j = 0; j < inputSize; ++j) { input.Add(new Point(i * inputSize + j, _trainingData["Inputs"][i][j])); } for (var j = 0; j < inputSize; ++j) { output.Add(new Point(i * inputSize + j + outputOffset, j < outputSize ? _nn.GenerateOutput(_trainingData["Inputs"][i])[j] : 0)); } for (var j = 0; j < inputSize; j++) { expected.Add(new Point(i * inputSize + j + outputOffset, j < outputSize ? _trainingData["Outputs"][i][j] : 0)); } } OutputPlot.LineThickness = 2.5; OutputPlot.ScaleXAxis = true; OutputPlot.Add("Input", input, Colors.Black); OutputPlot.Add("Expected", expected, Colors.White); OutputPlot.Add("Output", output, Colors.Purple); }