Esempio n. 1
0
        public double[] Predict(double[] values)
        {
            if (values.Length != InputLayer.Neurons.Length)
            {
                throw new ArgumentException("Number of input values must match number of input neurons.", nameof(values));
            }

            InputLayer.InsertValues(values);
            HiddenLayer.Compute();
            OutputLayer.Compute();

            return(OutputLayer.GetValues());
        }
Esempio n. 2
0
        public void Train(IReadOnlyList <TrainingDataSet> trainingDataSets, double learningRate, double learningDataPercentage)
        {
            if (learningDataPercentage > 1 || learningDataPercentage < 0)
            {
                throw new ArgumentException("Percentage of training data must be a value between 0 and 1.", nameof(learningDataPercentage));
            }

            foreach (var dataSet in trainingDataSets)
            {
                if (dataSet.Inputs.Length != InputLayer.Neurons.Length)
                {
                    throw new ArgumentException($"Data set's number of input values ({dataSet.Inputs.Length}) does not match size of input layer ({InputLayer.Neurons.Length})", nameof(trainingDataSets));
                }

                if (dataSet.Outputs.Length != OutputLayer.Neurons.Length)
                {
                    throw new ArgumentException($"Data set's number of output values ({dataSet.Outputs.Length}) does not match size of output layer ({OutputLayer.Neurons.Length})", nameof(trainingDataSets));
                }
            }

            var learningDataCount = (int)Math.Floor(trainingDataSets.Count * learningDataPercentage);

            for (int i = 0; i < learningDataCount; i++)
            {
                InputLayer.InsertValues(trainingDataSets[i].Inputs);
                HiddenLayer.Compute();
                OutputLayer.Compute();

                OutputLayer.ComputeDelta(trainingDataSets[i].Outputs);
                HiddenLayer.ComputeDelta();
                InputLayer.ComputeDelta();

                HiddenLayer.UpdateWeights(learningRate);
                OutputLayer.UpdateWeights(learningRate);
            }

            var total = 0d;

            for (int i = learningDataCount; i < trainingDataSets.Count; i++)
            {
                var outcome = Predict(trainingDataSets[i].Inputs);

                for (int j = 0; j < outcome.Length; j++)
                {
                    total += Math.Abs(trainingDataSets[i].Outputs[j] + outcome[j]) / 2;
                }
            }

            Accuracy = total / ((trainingDataSets.Count - learningDataCount) * OutputLayer.Neurons.Length);
        }
Esempio n. 3
0
        public Vector <float> Compute(StatePair input, bool training)
        {
            // Forward propagate.
            var img = InputLayer.Compute(input.Spatial);

            for (int i = 0; i < ConvolutionalLayers.Length; i++)
            {
                img = SubSampleLayers[i].Compute(ConvolutionalLayers[i].Compute(img));
            }
            _vecp.left           = FlattenLayer.Compute(img);
            _vecp.right          = LinearHiddenLayer.Compute(VectorInput.Compute(input.Linear));
            IsOutputFromTraining = false;
            var res = OutputLayer.Compute(CombinationLayer.Compute(_vecp));

            if (ValuesComputed != null)
            {
                ValuesComputed(res, training);
            }
            return(res);
        }