Esempio n. 1
0
        public int[] Argmax(IWeightTensor w, int dim)
        {
            int[]        idx = null;
            WeightTensor m   = w as WeightTensor;

            using (Tensor argMaxT = Ops.Argmax(null, m.TWeight, dim))
            {
                float[] res = new float[argMaxT.ElementCount()];
                argMaxT.CopyToArray(res);

                idx = new int[res.Length];
                for (int i = 0; i < res.Length; i++)
                {
                    idx[i] = (int)res[i];
                }
            }

            return(idx);
        }
Esempio n. 2
0
        static void PredictMnist(string modelPath, string xtestPath, string ytestPath = null)
        {
            var xtest = TensorUtils.Deserialize(File.OpenRead(xtestPath));

            xtest = xtest.Cast(DType.Float32);
            xtest = Ops.Div(null, xtest, 255f);

            // xtest = xtest.Narrow(0, 0, 101);

            var model = Sequential.Load(modelPath);

            var result = model.Predict(xtest, batchSize: 32);

            if (ytestPath == null)
            {
                return;
            }

            var ytest = TensorUtils.Deserialize(File.OpenRead(ytestPath));

            ytest = ytest.Cast(DType.Float32);
            // ytest = ytest.Narrow(0, 0, 101);
            ytest = Ops.Argmax(null, ytest, 1).Squeeze();

            var t = result.Narrow(0, 0, 11);

            // Console.WriteLine(t.Format());

            result = Ops.Argmax(null, result, 1).Squeeze();

            t = result.Narrow(0, 0, 11);
            // Console.WriteLine(t.Format());

            double sum = 0.0;

            for (var i = 0; i < ytest.Sizes[0]; ++i)
            {
                sum += (int)ytest.GetElementAsFloat(i) == (int)result.GetElementAsFloat(i) ? 1.0 : 0.0;
            }

            Console.WriteLine($"Accuracy: {sum / ytest.Sizes[0] * 100}%");
        }
Esempio n. 3
0
 /// <summary>
 /// Argmaxes the specified dimension.
 /// </summary>
 /// <param name="dimension">The dimension.</param>
 /// <returns>TVar.</returns>
 public Variable Argmax(int dimension)
 {
     return(new Variable(new UnaryTensorExpression(this.Expression, (result, src) => Ops.Argmax(result, src, dimension))));
 }