public void ReceivedOdometryUpdate(ROSBridgeMsg data) { //In WGS84 OdometryMsg nav = (OdometryMsg)data; GeoPointWGS84 geoPoint = new GeoPointWGS84 { latitude = nav._pose._pose._position.GetY(), longitude = nav._pose._pose._position.GetX(), altitude = nav._pose._pose._position.GetZ(), }; Quaternion orientation = new Quaternion( x: nav._pose._pose._orientation.GetX(), z: nav._pose._pose._orientation.GetY(), y: nav._pose._pose._orientation.GetZ(), w: nav._pose._pose._orientation.GetW() ); _odometryDataToConsume = new OdometryData { Position = geoPoint, Orientation = orientation }; _hasOdometryDataToConsume = true; }
public void LocaliseAlongPath() { // systematic bias float bias_x_mm = -200; float bias_y_mm = 0; // number of stereo cameras on the robot's head int no_of_stereo_cameras = 2; // diameter of the robot's head float head_diameter_mm = 100; // number of stereo features per step during mapping int no_of_mapping_stereo_features = 300; // number of stereo features observed per localisation step int no_of_localisation_stereo_features = 100; string filename = "localise_along_path.dat"; float path_length_mm = 20000; float start_orientation = 0; float end_orientation = 0; // 90 * (float)Math.PI / 180.0f; float distance_between_poses_mm = 100; float disparity = 15; string overall_map_filename = "overall_map.jpg"; byte[] overall_map_img = null; int overall_img_width = 640; int overall_img_height = 480; int overall_map_dimension_mm = 0; int overall_map_centre_x_mm = 0; int overall_map_centre_y_mm = 0; string[] str = filename.Split('.'); List <OdometryData> path = null; SavePath( filename, path_length_mm, start_orientation, end_orientation, distance_between_poses_mm, disparity, no_of_mapping_stereo_features, no_of_stereo_cameras, ref path); Assert.AreEqual(true, File.Exists(filename)); Assert.AreEqual(true, File.Exists(str[0] + "_disparities_index.dat")); Assert.AreEqual(true, File.Exists(str[0] + "_disparities.dat")); int no_of_grids = 1; int grid_type = metagrid.TYPE_SIMPLE; int dimension_mm = 8000; int dimension_vertical_mm = 2000; int cellSize_mm = 50; int localisationRadius_mm = 8000; int maxMappingRange_mm = 10000; float vacancyWeighting = 0.5f; metagridBuffer buffer = new metagridBuffer( no_of_grids, grid_type, dimension_mm, dimension_vertical_mm, cellSize_mm, localisationRadius_mm, maxMappingRange_mm, vacancyWeighting); buffer.LoadPath( filename, str[0] + "_disparities_index.dat", str[0] + "_disparities.dat", ref overall_map_dimension_mm, ref overall_map_centre_x_mm, ref overall_map_centre_y_mm); int img_width = 640; int img_height = 640; byte[] img = new byte[img_width * img_height * 3]; Bitmap bmp = new Bitmap(img_width, img_height, System.Drawing.Imaging.PixelFormat.Format24bppRgb); buffer.ShowPath(img, img_width, img_height, true, true); BitmapArrayConversions.updatebitmap_unsafe(img, bmp); bmp.Save("localise_along_path.jpg", System.Drawing.Imaging.ImageFormat.Jpeg); robotGeometry geom = new robotGeometry(); geom.CreateStereoCameras( no_of_stereo_cameras, 120, 0, 320, 240, 65, head_diameter_mm, 0); geom.CreateSensorModels(buffer); Random rnd = new Random(0); pos3D pose_offset = null; bool buffer_transition = false; float[][] stereo_features = new float[no_of_stereo_cameras][]; byte[][,] stereo_features_colour = new byte[no_of_stereo_cameras][, ]; float[][] stereo_features_uncertainties = new float[no_of_stereo_cameras][]; for (int i = 0; i < no_of_stereo_cameras; i++) { stereo_features_uncertainties[i] = new float[no_of_localisation_stereo_features]; for (int j = 0; j < no_of_localisation_stereo_features; j++) { stereo_features_uncertainties[i][j] = 1; } } float average_offset_x_mm = 0; float average_offset_y_mm = 0; List <OdometryData> estimated_path = new List <OdometryData>(); int no_of_localisation_failures = 0; for (int i = 0; i < path.Count - 1; i += 5) { string debug_mapping_filename = "localise_along_path_map_" + i.ToString() + ".jpg"; OdometryData p0 = path[i]; OdometryData p1 = path[i + 1]; // create an intermediate pose for (int cam = 0; cam < no_of_stereo_cameras; cam++) { geom.pose[cam].x = p0.x + ((p1.x - p0.x) / 2) + bias_x_mm; geom.pose[cam].y = p0.y + ((p1.y - p0.y) / 2) + bias_y_mm; geom.pose[cam].z = 0; geom.pose[cam].pan = p0.orientation + ((p1.orientation - p0.orientation) / 2); // create stereo features int ctr = 0; stereo_features[cam] = new float[no_of_localisation_stereo_features * 3]; stereo_features_colour[cam] = new byte[no_of_localisation_stereo_features, 3]; for (int f = 0; f < no_of_localisation_stereo_features; f += 5) { if (f < no_of_localisation_stereo_features / 2) { stereo_features[cam][ctr++] = 20; stereo_features[cam][ctr++] = rnd.Next(239); } else { stereo_features[cam][ctr++] = geom.image_width[cam] - 20; stereo_features[cam][ctr++] = rnd.Next(239); } stereo_features[cam][ctr++] = disparity; } } float matching_score = buffer.Localise( geom, stereo_features, stereo_features_colour, stereo_features_uncertainties, rnd, ref pose_offset, ref buffer_transition, debug_mapping_filename, bias_x_mm, bias_y_mm, overall_map_filename, ref overall_map_img, overall_img_width, overall_img_height, overall_map_dimension_mm, overall_map_centre_x_mm, overall_map_centre_y_mm); if (matching_score != occupancygridBase.NO_OCCUPANCY_EVIDENCE) { Console.WriteLine("pose_offset (mm): " + pose_offset.x.ToString() + ", " + pose_offset.y.ToString() + ", " + pose_offset.pan.ToString()); OdometryData estimated_pose = new OdometryData(); estimated_pose.x = geom.pose[0].x + pose_offset.x; estimated_pose.y = geom.pose[0].y + pose_offset.y; estimated_pose.orientation = geom.pose[0].pan + pose_offset.pan; estimated_path.Add(estimated_pose); average_offset_x_mm += pose_offset.x; average_offset_y_mm += pose_offset.y; } else { // fail! no_of_localisation_failures++; Console.WriteLine("Localisation failure"); } } buffer.ShowPath(img, img_width, img_height, true, true); BitmapArrayConversions.updatebitmap_unsafe(img, bmp); bmp.Save("localisations_along_path.jpg", System.Drawing.Imaging.ImageFormat.Jpeg); average_offset_x_mm /= estimated_path.Count; average_offset_y_mm /= estimated_path.Count; Console.WriteLine("Average offsets: " + average_offset_x_mm.ToString() + ", " + average_offset_y_mm.ToString()); float diff_x_mm = Math.Abs(average_offset_x_mm - bias_x_mm); float diff_y_mm = Math.Abs(average_offset_y_mm - bias_y_mm); Assert.Less(diff_x_mm, cellSize_mm * 3 / 2, "x bias not detected"); Assert.Less(diff_y_mm, cellSize_mm * 3 / 2, "y bias not detected"); if (no_of_localisation_failures > 0) { Console.WriteLine("Localisation failures: " + no_of_localisation_failures.ToString()); } else { Console.WriteLine("No localisation failures!"); } Assert.Less(no_of_localisation_failures, 4, "Too many localisation failures"); }
/// <summary> /// saves path data to file /// </summary> /// <param name="filename">filename to save as</param> /// <param name="path_length_mm">length of the path</param> /// <param name="start_orientation">orientation at the start of the path</param> /// <param name="end_orientation">orientation at the end of the path</param> /// <param name="distance_between_poses_mm">distance between poses</param> public static void SavePath( string filename, float path_length_mm, float start_orientation, float end_orientation, float distance_between_poses_mm, float disparity, int no_of_stereo_features, int no_of_stereo_cameras, ref List <OdometryData> save_path) { string[] str = filename.Split('.'); float start_x_mm = 0; float start_y_mm = 0; float x_mm = start_x_mm, y_mm = start_y_mm; float orientation = start_orientation; int steps = (int)(path_length_mm / distance_between_poses_mm); save_path = new List <OdometryData>(); Random rnd = new Random(0); if (File.Exists(str[0] + "_disparities_index.dat")) { File.Delete(str[0] + "_disparities_index.dat"); } if (File.Exists(str[0] + "_disparities.dat")) { File.Delete(str[0] + "_disparities.dat"); } for (int i = 0; i < steps; i++) { for (int cam = 0; cam < no_of_stereo_cameras; cam++) { OdometryData data = new OdometryData(); data.orientation = orientation; data.x = x_mm; data.y = y_mm; save_path.Add(data); List <StereoFeatureTest> features = new List <StereoFeatureTest>(); for (int f = 0; f < no_of_stereo_features; f++) { StereoFeatureTest feat; if (f < no_of_stereo_features / 2) { feat = new StereoFeatureTest(20, rnd.Next(239), disparity); } else { feat = new StereoFeatureTest(300, rnd.Next(239), disparity); } feat.SetColour(0, 0, 0); features.Add(feat); } ProcessPose( str[0], DateTime.Now, x_mm, y_mm, orientation, 0, 0, 0, cam, features); } x_mm += distance_between_poses_mm * (float)Math.Sin(orientation); y_mm += distance_between_poses_mm * (float)Math.Cos(orientation); orientation = start_orientation + ((end_orientation - start_orientation) * i / steps); } FileStream fs = File.Open(filename, FileMode.Create); BinaryWriter bw = new BinaryWriter(fs); bw.Write(save_path.Count); for (int i = 0; i < save_path.Count; i++) { save_path[i].Write(bw); } bw.Close(); fs.Close(); // save images of the path if (filename.Contains(".")) { int img_width = 640; int img_height = 480; byte[] img = new byte[img_width * img_height * 3]; Bitmap bmp = new Bitmap(img_width, img_height, System.Drawing.Imaging.PixelFormat.Format24bppRgb); filename = str[0] + "_positions.jpg"; float tx = 0, ty = 0; float bx = 0, by = 0; ShowPath( save_path, img, img_width, img_height, 0, 0, 0, true, ref tx, ref ty, ref bx, ref by); BitmapArrayConversions.updatebitmap_unsafe(img, bmp); bmp.Save(filename, System.Drawing.Imaging.ImageFormat.Jpeg); } }
public void LocaliseAlongPath() { // systematic bias float bias_x_mm = -200; float bias_y_mm = 0; // number of stereo features per step during mapping int no_of_mapping_stereo_features = 300; // number of stereo features observed per localisation step int no_of_localisation_stereo_features = 50; string filename = "steersman_localise_along_path.dat"; float path_length_mm = 10000; float start_orientation = 0; float end_orientation = 0; //90 * (float)Math.PI / 180.0f; float distance_between_poses_mm = 100; float disparity = 15; string steersman_filename = "tests_steersman_LocaliseAlongPath.xml"; int body_width_mm = 465; int body_length_mm = 380; int body_height_mm = 1660; int centre_of_rotation_x = body_width_mm / 2; int centre_of_rotation_y = body_length_mm / 2; int centre_of_rotation_z = 10; int head_centroid_x = body_width_mm / 2; int head_centroid_y = 65; int head_centroid_z = 1600; string sensormodels_filename = ""; int no_of_stereo_cameras = 2; float baseline_mm = 120; float dist_to_centre_of_tilt_mm = 0; int image_width = 320; int image_height = 240; float FOV_degrees = 65; float head_diameter_mm = 160; float default_head_orientation_degrees = 0; int no_of_grid_levels = 1; int dimension_mm = 8000; int dimension_vertical_mm = 2000; int cellSize_mm = 50; string[] str = filename.Split('.'); List <OdometryData> path = null; tests_metagridbuffer.SavePath( filename, path_length_mm, start_orientation, end_orientation, distance_between_poses_mm, disparity, no_of_mapping_stereo_features, no_of_stereo_cameras, ref path); Assert.AreEqual(true, File.Exists(filename)); Assert.AreEqual(true, File.Exists(str[0] + "_disparities_index.dat")); Assert.AreEqual(true, File.Exists(str[0] + "_disparities.dat")); steersman visual_guidance = null; if (File.Exists(steersman_filename)) { visual_guidance = new steersman(); visual_guidance.Load(steersman_filename); } else { visual_guidance = new steersman( body_width_mm, body_length_mm, body_height_mm, centre_of_rotation_x, centre_of_rotation_y, centre_of_rotation_z, head_centroid_x, head_centroid_y, head_centroid_z, sensormodels_filename, no_of_stereo_cameras, baseline_mm, dist_to_centre_of_tilt_mm, image_width, image_height, FOV_degrees, head_diameter_mm, default_head_orientation_degrees, no_of_grid_levels, dimension_mm, dimension_vertical_mm, cellSize_mm); visual_guidance.Save(steersman_filename); } visual_guidance.LoadPath(filename, str[0] + "_disparities_index.dat", str[0] + "_disparities.dat"); visual_guidance.ShowLocalisations("steersman_localise_along_path.jpg", 640, 480); Random rnd = new Random(0); pos3D pose_offset = null; bool buffer_transition = false; float[][] stereo_features = new float[no_of_stereo_cameras][]; byte[][,] stereo_features_colour = new byte[no_of_stereo_cameras][, ]; float[][] stereo_features_uncertainties = new float[no_of_stereo_cameras][]; for (int i = 0; i < no_of_stereo_cameras; i++) { stereo_features_uncertainties[i] = new float[no_of_localisation_stereo_features]; for (int j = 0; j < no_of_localisation_stereo_features; j++) { stereo_features_uncertainties[i][j] = 1; } } float average_offset_x_mm = 0; float average_offset_y_mm = 0; List <OdometryData> estimated_path = new List <OdometryData>(); int no_of_localisation_failures = 0; DateTime start_time = DateTime.Now; int no_of_localisations = 0; for (int i = 0; i < path.Count - 1; i += 5, no_of_localisations++) { string debug_mapping_filename = "steersman_localise_along_path_map_" + i.ToString() + ".jpg"; OdometryData p0 = path[i]; OdometryData p1 = path[i + 1]; float current_x_mm = p0.x + ((p1.x - p0.x) / 2) + bias_x_mm; float current_y_mm = p0.y + ((p1.y - p0.y) / 2) + bias_y_mm; float current_pan = p0.orientation + ((p1.orientation - p0.orientation) / 2); // create an intermediate pose for (int cam = 0; cam < no_of_stereo_cameras; cam++) { // set the current pose visual_guidance.SetCurrentPosition( cam, current_x_mm, current_y_mm, 0, current_pan, 0, 0); // create stereo features int ctr = 0; stereo_features[cam] = new float[no_of_localisation_stereo_features * 3]; stereo_features_colour[cam] = new byte[no_of_localisation_stereo_features, 3]; for (int f = 0; f < no_of_localisation_stereo_features; f += 5) { if (f < no_of_localisation_stereo_features / 2) { stereo_features[cam][ctr++] = 20; stereo_features[cam][ctr++] = rnd.Next(239); } else { stereo_features[cam][ctr++] = image_width - 20; stereo_features[cam][ctr++] = rnd.Next(239); } stereo_features[cam][ctr++] = disparity; } } float offset_x_mm = 0; float offset_y_mm = 0; float offset_z_mm = 0; float offset_pan = 0; float offset_tilt = 0; float offset_roll = 0; bool valid_localisation = visual_guidance.Localise( stereo_features, stereo_features_colour, stereo_features_uncertainties, debug_mapping_filename, bias_x_mm, bias_y_mm, ref offset_x_mm, ref offset_y_mm, ref offset_z_mm, ref offset_pan, ref offset_tilt, ref offset_roll); if (valid_localisation) { Console.WriteLine("pose_offset (mm): " + offset_x_mm.ToString() + ", " + offset_y_mm.ToString() + ", " + offset_pan.ToString()); OdometryData estimated_pose = new OdometryData(); estimated_pose.x = current_x_mm + offset_x_mm; estimated_pose.y = current_y_mm + offset_y_mm; estimated_pose.orientation = current_pan + offset_pan; estimated_path.Add(estimated_pose); average_offset_x_mm += offset_x_mm; average_offset_y_mm += offset_y_mm; } else { // fail! no_of_localisation_failures++; Console.WriteLine("Localisation failure"); } } TimeSpan diff = DateTime.Now.Subtract(start_time); float time_per_localisation_sec = (float)diff.TotalSeconds / no_of_localisations; Console.WriteLine("Time per localisation: " + time_per_localisation_sec.ToString() + " sec"); visual_guidance.ShowLocalisations("steersman_localisations_along_path.jpg", 640, 480); average_offset_x_mm /= estimated_path.Count; average_offset_y_mm /= estimated_path.Count; Console.WriteLine("Average offsets: " + average_offset_x_mm.ToString() + ", " + average_offset_y_mm.ToString()); float diff_x_mm = Math.Abs(average_offset_x_mm - bias_x_mm); float diff_y_mm = Math.Abs(average_offset_y_mm - bias_y_mm); Assert.Less(diff_x_mm, cellSize_mm * 3 / 2, "x bias not detected"); Assert.Less(diff_y_mm, cellSize_mm * 3 / 2, "y bias not detected"); if (no_of_localisation_failures > 0) { Console.WriteLine("Localisation failures: " + no_of_localisation_failures.ToString()); } else { Console.WriteLine("No localisation failures!"); } Assert.Less(no_of_localisation_failures, 4, "Too many localisation failures"); }