Esempio n. 1
0
        public static void Run()
        {
            Random rnd = new Random();

            FieldLetterTranslator.addChar((char)10);
            Console.WriteLine("Generate started");
            DataSet data = new TextDataSetGenerator(@"C:\Users\Kubik.HOME-PC\Dropbox\shakespear.txt");

            Console.WriteLine("Generate comlpeat");
            int           inputDimension  = FieldLetterTranslator.Letters.Length;
            int           hiddenDimension = 128;
            int           outputDimension = FieldLetterTranslator.Letters.Length;
            int           hiddenLayers    = 2;
            double        learningRate    = 0.0012;
            double        initPatStdDev   = 0.08;
            INonlinearity lin             = new SigmoidUnit();
            NeuralNetwork network         = NetworkBuilder.MakeLstm(inputDimension, hiddenDimension, hiddenLayers, outputDimension, lin, initPatStdDev, rnd);

            string output;


            int reportEveryNthEpoch = 50;
            int trainingEpochs      = 50;

            for (int i = 0; i < trainingEpochs; i++)
            {
                Trainer.train <NeuralNetwork>(1, learningRate, network, data, reportEveryNthEpoch, rnd);
                if (Directory.Exists(@"C:\Users\Kubik.HOME-PC\Documents\NeuralsTraing4\step" + i.ToString()))
                {
                    Directory.Delete(@"C:\Users\Kubik.HOME-PC\Documents\NeuralsTraing4\step" + i.ToString(), true);
                }
                learningRate *= 0.85;
                Directory.CreateDirectory(@"C:\Users\Kubik.HOME-PC\Documents\NeuralsTraing4\step" + i.ToString());
                NetworkBuilder.SaveLSTM(network, @"C:\Users\Kubik.HOME-PC\Documents\NeuralsTraing4\step" + i.ToString());
                output = generateOutput(network, 'a', 1000);
                using (StreamWriter sw = new StreamWriter(Path.Combine(@"C:\Users\Kubik.HOME-PC\Documents\NeuralsTraing4\outputs", "output" + i.ToString() + ".txt")))
                {
                    sw.WriteLine(output);
                }
            }
        }
Esempio n. 2
0
        static void Main(string[] args)
        {
            //ExampleDsr.Run(); incomplete
            //Thread t = new Thread(() => {
            //    ExampleText.Run();
            //}, 1000000000);
            //t.Start();
            //ExampleXor.Run();
            Random rnd = new Random();

            while (true)
            {
                NeuralNetwork network = new NeuralNetwork(null);
                if (ask("chcete síť načíst (y) nebo vygenerovat novou (n)?: "))
                {
                    while (true)
                    {
                        try
                        {
                            Console.Write("Zadejte cestu ke složce se uloženou sítí: ");
                            string path = Console.ReadLine();
                            Console.WriteLine("-------------------------LOADING STARTED----------------------------");
                            network = NetworkBuilder.LoadLSTM(path);
                            Console.WriteLine("-------------------------LOADING COMPLEAT---------------------------");
                            break;
                        }
                        catch
                        {
                            Console.WriteLine("Zadali jste neplatnou cestu");
                        }
                    }
                }
                else
                {
                    int    hiddenDimension = askInt("Zadejte dimenzi skryté vrstvy: ");
                    int    hiddenLayers    = askInt("Zadejte počet skrytých vrstev: ");
                    double init            = askDouble("Zadejte hodnotu, která určí rozsah vygenerovaných vah: ");
                    network = NetworkBuilder.MakeLstm(FieldLetterTranslator.Letters.Length, hiddenDimension, hiddenLayers, FieldLetterTranslator.Letters.Length, new SigmoidUnit(), init, rnd);
                }
                if (ask("Přejete si síť naučit (y) nebo jen vygenerovat výstup (n)?: "))
                {
                    int    epochs = askInt("Zadejte počet epoch, který se má síť naučit: ");
                    double lr     = askDouble("Zadejte počáteční hodnotu learning rate: ");
                    double dr     = askDouble("Zadejte hodnotu, kterou chcete learing rate po každé epoše násobit: ");
                    while (true)
                    {
                        try
                        {
                            Console.Write("Zadejte cestu k tréninkovým datům: ");
                            string learningPath = Console.ReadLine();
                            Console.Write("Zadejte cestu ke složce, kam chcete ukládat výstupy z učení: ");
                            string savePath = Console.ReadLine();
                            ExampleText.Run(network, learningPath, savePath, epochs, lr, dr, rnd);
                            break;
                        }
                        catch
                        {
                            Console.WriteLine("zadali jste špatnou cestu");
                        }
                    }
                }
                else
                {
                    int numOfChars = askInt("Zadejte počet znaků, které chcete vygenerovat: ");
                    while (true)
                    {
                        Console.Write("Zadejte cestu k souboru, kam chcete výstup uložit: ");
                        string path  = Console.ReadLine();
                        char   start = (char)rnd.Next(97, 123);
                        Console.WriteLine("-------------------------GENERATE STARTED----------------");
                        string output = start + ExampleText.generateOutput(network, start, numOfChars);
                        try
                        {
                            using (System.IO.StreamWriter sw = new System.IO.StreamWriter(path))
                            {
                                sw.WriteLine(output);
                            }
                            break;
                        }
                        catch
                        {
                            Console.WriteLine("Zadali jste neplatnou cestu");
                        }
                    }
                    Console.WriteLine("-------------------------GENERATE COMPLEAT---------------");
                }
                if (ask("Přejete si aplikaci ukočit?: "))
                {
                    break;
                }
            }
        }
Esempio n. 3
0
        public void Predict()
        {
            if (!Config.Reload &&
                File.Exists(Config.RnnPredictedXFile) &&
                File.Exists(Config.RnnPredictedYFile))
            {
                return;
            }

            Random rng = new Random(Config.Random.Next());

            CustomDataSet data = new CustomDataSet(Config);

            RnnConfig rnnConfig = (RnnConfig)Serializer.Deserialize(Config.RnnConfigFile);

            int    inputDimension   = data.Training[0].Steps[0].Input.Rows;
            int    hiddenDimension  = 30;
            int    outputDimension  = data.Training[0].Steps[0].TargetOutput.Rows;
            int    hiddenLayers     = 1;
            double learningRate     = 0.01;
            double initParamsStdDev = 0.08;
            double dropout          = 0.5;
            double inDropout        = 0.8;

            INetwork nn = NetworkBuilder.MakeLstm(inputDimension,
                                                  hiddenDimension,
                                                  hiddenLayers,
                                                  outputDimension,
                                                  new LinearUnit(),
                                                  initParamsStdDev, rng, dropout, inDropout, Config);
            //nn = NetworkBuilder.MakeFeedForward(inputDimension,
            //    hiddenDimension,
            //    hiddenLayers,
            //    outputDimension,
            //    new SigmoidUnit(),
            //    new LinearUnit(),
            //    initParamsStdDev, rng, dropout, inDropout, Config);

            int reportEveryNthEpoch = 10;
            int trainingEpochs      = 100;

            Trainer.train <NeuralNetwork>(trainingEpochs, learningRate, nn, data, reportEveryNthEpoch, rng);

            StreamWriter predictedXFile = new StreamWriter(Config.RnnPredictedXFile);
            StreamWriter predictedYFile = new StreamWriter(Config.RnnPredictedYFile);

            for (int i = 0; i < data.Testing.First().Steps.Count; ++i)
            {
                DataStep ds = data.Testing.First().Steps[i];

                Graph g = new Graph(false);

                // Generate in dropout
                bool[] dropped = new bool[ds.Input.W.Length];
                for (int col = 0; col < dropped.Length; ++col)
                {
                    dropped[col] = Math.Abs(rnnConfig.GetTransformed(0, i, col, ds.Input.W[col])) < 0.0000001;
                }

                Matrix input  = new Matrix(ds.Input.W);
                Matrix output = nn.Activate(input, g, dropped);

                // Write into file
                string line1 = "";
                string line2 = "";
                foreach (double d in output.W)
                {
                    line1 += d + ";";
                }
                foreach (double d in ds.TargetOutput.W)
                {
                    line2 += d + ";";
                }

                predictedXFile.WriteLine(line1.Substring(0, line1.Length - 1));
                predictedYFile.WriteLine(line2.Substring(0, line2.Length - 1));
            }
            predictedXFile.Close();
            predictedYFile.Close();
        }