Esempio n. 1
0
        /// <summary>
        ///     Modify a sequence in-place by shuffling its contents.
        /// </summary>
        /// <param name="x">The array or list to be shuffled.</param>
        /// <remarks>https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.shuffle.html <br></br>Does not copy <paramref name="x"/></remarks>
        public void shuffle(NDArray x)
        {
            var count = x.size;

            while (count-- > 1)
            {
                var swapAt = randomizer.Next(x);
                var tmp    = x.GetAtIndex(0);
                x.SetAtIndex(x.GetAtIndex(swapAt), 0);
                x.SetAtIndex(tmp, swapAt);
            }
        }
Esempio n. 2
0
        public override NDArray Cast(NDArray nd, NPTypeCode dtype, bool copy)
        {
            if (dtype == NPTypeCode.Empty)
            {
                throw new ArgumentNullException(nameof(dtype));
            }

            NDArray clone() => new NDArray(nd.Storage.Clone());

            if (nd.Shape.IsEmpty)
            {
                if (copy)
                {
                    return(new NDArray(dtype));
                }

                nd.Storage = new UnmanagedStorage(dtype);
                return(nd);
            }

            if (nd.Shape.IsScalar || (nd.Shape.size == 1 && nd.Shape.NDim == 1))
            {
                var ret = NDArray.Scalar(nd.GetAtIndex(0), dtype);
                if (copy)
                {
                    return(ret);
                }

                nd.Storage = ret.Storage;
                return(nd);
            }

            if (nd.GetTypeCode == dtype)
            {
                //casting not needed
                return(copy ? clone() : nd);
            }
            else
            {
                //casting needed
                if (copy)
                {
                    if (nd.Shape.IsSliced)
                    {
                        nd = clone();
                    }

                    return(new NDArray(new UnmanagedStorage(ArraySlice.FromMemoryBlock(nd.Array.CastTo(dtype), false), nd.Shape)));
                }
                else
                {
                    var storage = nd.Shape.IsSliced ? nd.Storage.Clone() : nd.Storage;
                    nd.Storage = new UnmanagedStorage(ArraySlice.FromMemoryBlock(storage.InternalArray.CastTo(dtype), false), storage.Shape);
                    return(nd);
                }
            }
        }
Esempio n. 3
0
        public void UniformMultipleSample()
        {
            // Generate a uniform random sample from np.arange(5) of size 3:
            // This is equivalent to np.random.randint(0,5,3)
            int low       = 0;
            int high      = 5;
            int nrSamples = 3;

            NDArray actual = np.random.choice(high, (Shape)nrSamples);

            Assert.AreEqual(actual.size, nrSamples, "Unexpected number of elements");

            // Verify that all elements in output are within the range
            for (int i = 0; i < actual.size; i++)
            {
                Assert.IsTrue(actual.GetAtIndex <int>(i) >= low, "Element was less than expected");
                Assert.IsTrue(actual.GetAtIndex <int>(i) < high, "Element was greater than expected");
            }
        }
Esempio n. 4
0
        public void NonUniformSample()
        {
            // Generate a non-uniform random sample from np.arange(5) of size 3:
            int low       = 0;
            int high      = 5;
            int nrSamples = 3;

            double[] probabilities = new double[] { 0.1, 0, 0.3, 0.6, 0 };

            NDArray actual = np.random.choice(5, (Shape)nrSamples, probabilities: probabilities);

            Assert.AreEqual(actual.size, nrSamples, "Unexpected number of elements");

            // Verify that all elements in output are within the range
            for (int i = 0; i < actual.size; i++)
            {
                Assert.IsTrue(actual.GetAtIndex <int>(i) >= low, "Element was less than expected");
                Assert.IsTrue(actual.GetAtIndex <int>(i) < high, "Element was greater than expected");
                Assert.IsTrue(actual.GetAtIndex <int>(i) != 1, "Sampled zero-probability element");
                Assert.IsTrue(actual.GetAtIndex <int>(i) != 4, "Sampled zero-probability element");
            }
        }
        public override NDArray ReduceProduct(NDArray arr, int? axis_, bool keepdims = false, NPTypeCode? typeCode = null)
        {
            //in order to iterate an axis:
            //consider arange shaped (1,2,3,4) when we want to summarize axis 1 (2nd dimension which its value is 2)
            //the size of the array is [1, 2, n, m] all shapes after 2nd multiplied gives size
            //the size of what we need to reduce is the size of the shape of the given axis (shape[axis])
            var shape = arr.Shape;
            if (shape.IsEmpty || shape.size==0)
                return NDArray.Scalar(1, (typeCode ?? arr.typecode));

            if (shape.IsScalar || (shape.size == 1 && shape.NDim == 1))
            {
                var r = NDArray.Scalar(typeCode.HasValue ? Converts.ChangeType(arr.GetAtIndex(0), typeCode.Value) : arr.GetAtIndex(0));
                if (keepdims)
                    r.Storage.ExpandDimension(0);
                
                return r;
            }

            if (axis_ == null)
            {
                var r = NDArray.Scalar(product_elementwise(arr, typeCode));
                if (keepdims)
                    r.Storage.ExpandDimension(0);
                else if (!r.Shape.IsScalar && r.Shape.size == 1 && r.ndim == 1)
                    r.Storage.Reshape(Shape.Scalar);
                return r;
            }

            var axis = axis_.Value;
            while (axis < 0)
                axis = arr.ndim + axis; //handle negative axis

            if (axis >= arr.ndim)
                throw new ArgumentOutOfRangeException(nameof(axis));

            if (shape[axis] == 1)
            {
                //if the given div axis is 1 and can be squeezed out.
                if (keepdims)
                    return new NDArray(arr.Storage.Alias());
                return np.squeeze_fast(arr, axis);
            }

            //handle keepdims
            Shape axisedShape = Shape.GetAxis(shape, axis);
            var retType = typeCode ?? (arr.GetTypeCode.GetAccumulatingType());

            //prepare ret
            var ret = new NDArray(retType, axisedShape, false);
            var iterAxis = new NDCoordinatesAxisIncrementor(ref shape, axis);
            var iterRet = new NDCoordinatesIncrementor(ref axisedShape);
            var iterIndex = iterRet.Index;
            var slices = iterAxis.Slices;

            //resolve the accumulator type

#if _REGEN1
            #region Compute
            switch (arr.GetTypeCode)
		    {
			    %foreach supported_numericals,supported_numericals_lowercase%
			    case NPTypeCode.#1: 
                {
                    switch (retType)
		            {
			            %foreach supported_numericals,supported_numericals_lowercase,supported_numericals_onevales%
			            case NPTypeCode.#101: 
                        {
                            do
                            {
                                var slice = arr[slices];
                                var iter = slice.AsIterator<#2>();
                                var moveNext = iter.MoveNext;
                                var hasNext = iter.HasNext;
                                |#102 sum = #103;
                                while (hasNext())
                                    sum *= (#102) moveNext();

                                ret.Set#101(Converts.To#101(sum), iterIndex);
                            } while (iterAxis.Next() != null && iterRet.Next() != null);
                            break;
                        }