public void XOR(int iterations, double minimumAccuracy)
        {
            var mlp = new MultilayerPerceptron <Tanh>(2, new int[] { 10, 10 }, 1);

            double[][] inputs = new double[][] {
                new double[] { 0, 0 },
                new double[] { 1, 0 },
                new double[] { 0, 1 },
                new double[] { 1, 1 },
            };
            double[][] outputs = new double[][] {
                new double[] { 0 },
                new double[] { 1 },
                new double[] { 1 },
                new double[] { 0 },
            };

            double[] output = new double[1];
            for (int i = 0; i < iterations; i++)
            {
                for (int j = 0; j < inputs.Length; j++)
                {
                    mlp.Predict(inputs[j], output);
                    mlp.Train(outputs[j], 0.4, 0.9);
                }
            }

            for (int j = 0; j < inputs.Length; j++)
            {
                mlp.Predict(inputs[j], output);
                double diff = 1 - Math.Abs(output[0] - outputs[j][0]);
                Assert.GreaterOrEqual(diff, minimumAccuracy);
            }
        }
Esempio n. 2
0
        private static void Main()
        {
            // The mlp takes column vectors as input and gives column vectors as output.  The dlib::matrix
            // object is used to represent the column vectors. So the first thing we do here is declare
            // a convenient typedef for the matrix object we will be using.

            // This typedef declares a matrix with 2 rows and 1 column.  It will be the
            // object that contains each of our 2 dimensional samples.   (Note that if you wanted
            // more than 2 features in this vector you can simply change the 2 to something else)
            //typedef matrix<double, 2, 1 > sample_type;

            // make an instance of a sample matrix so we can use it below
            using (var sample = new SampleType(2, 1))
            {
                // Create a multi-layer perceptron network.   This network has 2 nodes on the input layer
                // (which means it takes column vectors of length 2 as input) and 5 nodes in the first
                // hidden layer.  Note that the other 4 variables in the mlp's constructor are left at
                // their default values.
                using (var net = new MultilayerPerceptron <Kernel1>(2, 5))
                {
                    // Now let's put some data into our sample and train on it.  We do this
                    // by looping over 41*41 points and labeling them according to their
                    // distance from the origin.
                    for (var i = 0; i < 1000; ++i)
                    {
                        for (var r = -20; r <= 20; ++r)
                        {
                            for (var c = -20; c <= 20; ++c)
                            {
                                sample[0] = r;
                                sample[1] = c;

                                // if this point is less than 10 from the origin
                                if (Math.Sqrt((double)r * r + c * c) <= 10)
                                {
                                    net.Train(sample, 1);
                                }
                                else
                                {
                                    net.Train(sample, 0);
                                }
                            }
                        }
                    }

                    // Now we have trained our mlp.  Let's see how well it did.
                    // Note that if you run this program multiple times you will get different results. This
                    // is because the mlp network is randomly initialized.

                    // each of these statements prints out the output of the network given a particular sample.

                    sample[0] = 3.123;
                    sample[1] = 4;
                    using (var ret = net.Operator(sample))
                        Console.WriteLine($"This sample should be close to 1 and it is classified as a {ret}");

                    sample[0] = 13.123;
                    sample[1] = 9.3545;
                    using (var ret = net.Operator(sample))
                        Console.WriteLine($"This sample should be close to 0 and it is classified as a {ret}");

                    sample[0] = 13.123;
                    sample[1] = 0;
                    using (var ret = net.Operator(sample))
                        Console.WriteLine($"This sample should be close to 0 and it is classified as a {ret}");
                }
            }
        }
        public void Iris(int iterations, double minimumAccuracy)
        {
            string[] lines = File.ReadAllLines("./Data/iris.csv");

            double[][] inputs  = new double[lines.Length][];
            double[][] outputs = new double[lines.Length][];
            for (int i = 0; i < lines.Length; i++)
            {
                inputs[i]  = new double[4];
                outputs[i] = new double[1];
                string[] values = lines[i].Split(',');

                for (int j = 0; j < 4; j++)
                {
                    inputs[i][j] = double.Parse(values[j]);
                }

                outputs[i][0] = Map(values[4]);
            }

            for (int i = 0; i < 4; i++)
            {
                double min = double.PositiveInfinity;
                double max = double.NegativeInfinity;
                for (int j = 0; j < inputs.Length; j++)
                {
                    if (inputs[j][i] < min)
                    {
                        min = inputs[j][i];
                    }
                    if (inputs[j][i] > max)
                    {
                        max = inputs[j][i];
                    }
                }

                for (int j = 0; j < inputs.Length; j++)
                {
                    inputs[j][i] = Normalize((inputs[j][i] - min) / (max - min));
                }
            }

            var mlp = new MultilayerPerceptron <Tanh>(4, new int[] { 10, 10 }, 1);

            double normalizedCorrect = 0;

            double[] output = new double[1];
            for (int i = 0; i < iterations; i++)
            {
                int correct = 0;
                for (int j = 0; j < inputs.Length; j++)
                {
                    mlp.Predict(inputs[j], output);
                    mlp.Train(outputs[j], 0.1, 0.4);

                    double expectedOutput = outputs[j][0];
                    if (Map(expectedOutput) == Map(output[0]))
                    {
                        correct++;
                    }
                }

                normalizedCorrect = (double)correct / inputs.Length;
            }

            Assert.GreaterOrEqual(normalizedCorrect, minimumAccuracy);
        }