public virtual void Annotate(Annotation annotation) { // turn the annotation into a sentence if (annotation.ContainsKey(typeof(CoreAnnotations.SentencesAnnotation))) { if (nThreads == 1) { foreach (ICoreMap sentence in annotation.Get(typeof(CoreAnnotations.SentencesAnnotation))) { DoOneSentence(sentence); } } else { MulticoreWrapper <ICoreMap, ICoreMap> wrapper = new MulticoreWrapper <ICoreMap, ICoreMap>(nThreads, new POSTaggerAnnotator.POSTaggerProcessor(this)); foreach (ICoreMap sentence in annotation.Get(typeof(CoreAnnotations.SentencesAnnotation))) { wrapper.Put(sentence); while (wrapper.Peek()) { wrapper.Poll(); } } wrapper.Join(); while (wrapper.Peek()) { wrapper.Poll(); } } } else { throw new Exception("unable to find words/tokens in: " + annotation); } }
/// <summary> /// Instantiate a classifier with training data and randomly /// initialized parameter matrices in order to begin training. /// </summary> /// <param name="config"/> /// <param name="dataset"/> /// <param name="E"/> /// <param name="W1"/> /// <param name="b1"/> /// <param name="W2"/> /// <param name="preComputed"/> public Classifier(Config config, Dataset dataset, double[][] E, double[][] W1, double[] b1, double[][] W2, IList <int> preComputed) { // E: numFeatures x embeddingSize // W1: hiddenSize x (embeddingSize x numFeatures) // b1: hiddenSize // W2: numLabels x hiddenSize // Weight matrices // Global gradSaved // Gradient histories this.config = config; this.dataset = dataset; this.E = E; this.W1 = W1; this.b1 = b1; this.W2 = W2; InitGradientHistories(); numLabels = W2.Length; preMap = new Dictionary <int, int>(); for (int i = 0; i < preComputed.Count && i < config.numPreComputed; ++i) { preMap[preComputed[i]] = i; } isTraining = dataset != null; if (isTraining) { jobHandler = new MulticoreWrapper <Pair <ICollection <Example>, Classifier.FeedforwardParams>, Classifier.Cost>(config.trainingThreads, new Classifier.CostFunction(this), false); } else { jobHandler = null; } }
/// <summary> /// Fix tree structure, phrasal categories and part-of-speech labels in newly expanded /// multi-word tokens. /// </summary> /// <exception cref="System.Exception"/> /// <exception cref="Java.Util.Concurrent.ExecutionException"/> private IList <Tree> FixMultiWordTokens(IList <Tree> trees) { bool ner = PropertiesUtils.GetBool(options, "ner", false); // Shared resources IFactory <TreeNormalizer> tnf = new _IFactory_389(); ITreeFactory tf = new LabeledScoredTreeFactory(); IThreadsafeProcessor <ICollection <Tree>, ICollection <Tree> > processor = new AnCoraProcessor.MultiWordProcessor(this, tnf, tf, ner); int availableProcessors = Runtime.GetRuntime().AvailableProcessors(); MulticoreWrapper <ICollection <Tree>, ICollection <Tree> > wrapper = new MulticoreWrapper <ICollection <Tree>, ICollection <Tree> >(availableProcessors, processor, false); // Chunk our work so that parallelization is actually worth it int numChunks = availableProcessors * 20; IList <IList <Tree> > chunked = CollectionUtils.PartitionIntoFolds(trees, numChunks); IList <Tree> ret = new List <Tree>(); foreach (ICollection <Tree> coll in chunked) { wrapper.Put(coll); while (wrapper.Peek()) { Sharpen.Collections.AddAll(ret, wrapper.Poll()); } } wrapper.Join(); while (wrapper.Peek()) { Sharpen.Collections.AddAll(ret, wrapper.Poll()); } return(ret); }
public static void RedoTags(IList <Tree> trees, Edu.Stanford.Nlp.Tagger.Common.Tagger tagger, int nThreads) { if (nThreads == 1) { foreach (Tree tree in trees) { RedoTags(tree, tagger); } } else { MulticoreWrapper <Tree, Tree> wrapper = new MulticoreWrapper <Tree, Tree>(nThreads, new ShiftReduceParser.RetagProcessor(tagger)); foreach (Tree tree in trees) { wrapper.Put(tree); } wrapper.Join(); } }
public static IdentityHashMap <Tree, IList <Tree> > ConvertToTrees(ICollection <Tree> keys, IdentityHashMap <Tree, byte[]> compressed, int numThreads) { IdentityHashMap <Tree, IList <Tree> > uncompressed = Generics.NewIdentityHashMap(); MulticoreWrapper <byte[], IList <Tree> > wrapper = new MulticoreWrapper <byte[], IList <Tree> >(numThreads, new CacheParseHypotheses.DecompressionProcessor()); foreach (Tree tree in keys) { wrapper.Put(compressed[tree]); } foreach (Tree tree_1 in keys) { if (!wrapper.Peek()) { wrapper.Join(); } uncompressed[tree_1] = wrapper.Poll(); } return(uncompressed); }
/// <summary>Write output of coref system in conll format, and log.</summary> private static int LogOutput(MulticoreWrapper <Pair <Document, Edu.Stanford.Nlp.Coref.Hybrid.HybridCorefSystem>, StringBuilder[]> wrapper, PrintWriter writerGold, PrintWriter writerBeforeCoref, PrintWriter writerAfterCoref, int docCnt) { while (wrapper.Peek()) { StringBuilder[] output = wrapper.Poll(); writerGold.Print(output[0]); writerBeforeCoref.Print(output[1]); writerAfterCoref.Print(output[2]); if (output[3].Length > 0) { log.Info(output[3]); } if ((++docCnt) % 10 == 0) { log.Info(docCnt + " document(s) processed"); } } return(docCnt); }
/// <summary>Segment input and write to output stream.</summary> /// <param name="segmenter"/> /// <param name="br"/> /// <param name="pwOut"/> /// <param name="nThreads"/> /// <returns>input characters processed per second</returns> private static double Decode(Edu.Stanford.Nlp.International.Arabic.Process.ArabicSegmenter segmenter, BufferedReader br, PrintWriter pwOut, int nThreads) { System.Diagnostics.Debug.Assert(nThreads > 0); long nChars = 0; long startTime = Runtime.NanoTime(); if (nThreads > 1) { MulticoreWrapper <string, string> wrapper = new MulticoreWrapper <string, string>(nThreads, segmenter); try { for (string line; (line = br.ReadLine()) != null;) { nChars += line.Length; wrapper.Put(line); while (wrapper.Peek()) { pwOut.Println(wrapper.Poll()); } } wrapper.Join(); while (wrapper.Peek()) { pwOut.Println(wrapper.Poll()); } } catch (IOException e) { log.Warn(e); } } else { nChars = segmenter.Segment(br, pwOut); } long duration = Runtime.NanoTime() - startTime; double charsPerSec = (double)nChars / (duration / 1000000000.0); return(charsPerSec); }
// static main /// <param name="args">Command-line arguments: modelFile (runs as a filter from stdin to stdout)</param> public static void Main(string[] args) { if (args.Length != 1) { System.Console.Error.Printf("Usage: java %s model_file < input_file%n", typeof(Edu.Stanford.Nlp.Tagger.Maxent.Documentation.MulticoreWrapperDemo).FullName); System.Environment.Exit(-1); } try { // Load MaxentTagger, which is threadsafe string modelFile = args[0]; MaxentTagger tagger = new MaxentTagger(modelFile); // Configure to run with 4 worker threads int nThreads = 4; MulticoreWrapper <string, string> wrapper = new MulticoreWrapper <string, string>(nThreads, new _IThreadsafeProcessor_42(tagger)); // MaxentTagger is threadsafe // Submit jobs, which come from stdin BufferedReader br = new BufferedReader(new InputStreamReader(Runtime.@in)); for (string line; (line = br.ReadLine()) != null;) { wrapper.Put(line); while (wrapper.Peek()) { System.Console.Out.WriteLine(wrapper.Poll()); } } // Finished reading the input. Wait for jobs to finish wrapper.Join(); while (wrapper.Peek()) { System.Console.Out.WriteLine(wrapper.Poll()); } } catch (IOException e) { Sharpen.Runtime.PrintStackTrace(e); } }
/// <summary> /// Samples the complete sequence once in the forward direction /// Destructively modifies the sequence in place. /// </summary> /// <param name="sequence">the sequence to start with.</param> public virtual double SampleSequenceForward(ISequenceModel model, int[] sequence, double temperature, ICollection <int> onlySampleThesePositions) { double returnScore = double.NegativeInfinity; // log.info("Sampling forward"); if (onlySampleThesePositions != null) { foreach (int pos in onlySampleThesePositions) { returnScore = SamplePosition(model, sequence, pos, temperature); } } else { if (samplingStyle == SequentialSampling) { for (int pos = 0; pos < sequence.Length; pos++) { returnScore = SamplePosition(model, sequence, pos, temperature); } } else { if (samplingStyle == RandomSampling) { foreach (int aSequence in sequence) { int pos = random.NextInt(sequence.Length); returnScore = SamplePosition(model, sequence, pos, temperature); } } else { if (samplingStyle == ChromaticSampling) { // make copies of the sequences and merge at the end IList <Pair <int, int> > results = new List <Pair <int, int> >(); foreach (IList <int> indieList in partition) { if (indieList.Count <= chromaticSize) { foreach (int pos in indieList) { Pair <int, double> newPosProb = SamplePositionHelper(model, sequence, pos, temperature); sequence[pos] = newPosProb.First(); } } else { MulticoreWrapper <IList <int>, IList <Pair <int, int> > > wrapper = new MulticoreWrapper <IList <int>, IList <Pair <int, int> > >(chromaticSize, new _IThreadsafeProcessor_269(this, model, sequence, temperature)); // returns the position to sample in first place and new label in second place results.Clear(); int interval = System.Math.Max(1, indieList.Count / chromaticSize); for (int begin = 0; end < indieListSize; begin += interval) { end = System.Math.Min(begin + interval, indieListSize); wrapper.Put(indieList.SubList(begin, end)); while (wrapper.Peek()) { Sharpen.Collections.AddAll(results, wrapper.Poll()); } } wrapper.Join(); while (wrapper.Peek()) { Sharpen.Collections.AddAll(results, wrapper.Poll()); } foreach (Pair <int, int> posVal in results) { sequence[posVal.First()] = posVal.Second(); } } } returnScore = model.ScoreOf(sequence); } } } } return(returnScore); }
protected internal override void Calculate(double[] theta) { model.VectorToParams(theta); SentimentCostAndGradient.ModelDerivatives derivatives; if (model.op.trainOptions.nThreads == 1) { derivatives = ScoreDerivatives(trainingBatch); } else { // TODO: because some addition operations happen in different // orders now, this results in slightly different values, which // over time add up to significantly different models even when // given the same random seed. Probably not a big deal. // To be more specific, for trees T1, T2, T3, ... Tn, // when using one thread, we sum the derivatives T1 + T2 ... // When using multiple threads, we first sum T1 + ... + Tk, // then sum Tk+1 + ... + T2k, etc, for split size k. // The splits are then summed in order. // This different sum order results in slightly different numbers. MulticoreWrapper <IList <Tree>, SentimentCostAndGradient.ModelDerivatives> wrapper = new MulticoreWrapper <IList <Tree>, SentimentCostAndGradient.ModelDerivatives>(model.op.trainOptions.nThreads, new SentimentCostAndGradient.ScoringProcessor(this )); // use wrapper.nThreads in case the number of threads was automatically changed foreach (IList <Tree> chunk in CollectionUtils.PartitionIntoFolds(trainingBatch, wrapper.NThreads())) { wrapper.Put(chunk); } wrapper.Join(); derivatives = new SentimentCostAndGradient.ModelDerivatives(model); while (wrapper.Peek()) { SentimentCostAndGradient.ModelDerivatives batchDerivatives = wrapper.Poll(); derivatives.Add(batchDerivatives); } } // scale the error by the number of sentences so that the // regularization isn't drowned out for large training batchs double scale = (1.0 / trainingBatch.Count); value = derivatives.error * scale; value += ScaleAndRegularize(derivatives.binaryTD, model.binaryTransform, scale, model.op.trainOptions.regTransformMatrix, false); value += ScaleAndRegularize(derivatives.binaryCD, model.binaryClassification, scale, model.op.trainOptions.regClassification, true); value += ScaleAndRegularizeTensor(derivatives.binaryTensorTD, model.binaryTensors, scale, model.op.trainOptions.regTransformTensor); value += ScaleAndRegularize(derivatives.unaryCD, model.unaryClassification, scale, model.op.trainOptions.regClassification, false, true); value += ScaleAndRegularize(derivatives.wordVectorD, model.wordVectors, scale, model.op.trainOptions.regWordVector, true, false); derivative = NeuralUtils.ParamsToVector(theta.Length, derivatives.binaryTD.ValueIterator(), derivatives.binaryCD.ValueIterator(), SimpleTensor.IteratorSimpleMatrix(derivatives.binaryTensorTD.ValueIterator()), derivatives.unaryCD.Values.GetEnumerator (), derivatives.wordVectorD.Values.GetEnumerator()); }
/// <summary>Test the parser on a treebank.</summary> /// <remarks> /// Test the parser on a treebank. Parses will be written to stdout, and /// various other information will be written to stderr and stdout, /// particularly if <code>op.testOptions.verbose</code> is true. /// </remarks> /// <param name="testTreebank">The treebank to parse</param> /// <returns> /// The labeled precision/recall F<sub>1</sub> (EVALB measure) /// of the parser on the treebank. /// </returns> public virtual double TestOnTreebank(Treebank testTreebank) { log.Info("Testing on treebank"); Timing treebankTotalTimer = new Timing(); TreePrint treePrint = op.testOptions.TreePrint(op.tlpParams); ITreebankLangParserParams tlpParams = op.tlpParams; ITreebankLanguagePack tlp = op.Langpack(); PrintWriter pwOut; PrintWriter pwErr; if (op.testOptions.quietEvaluation) { NullOutputStream quiet = new NullOutputStream(); pwOut = tlpParams.Pw(quiet); pwErr = tlpParams.Pw(quiet); } else { pwOut = tlpParams.Pw(); pwErr = tlpParams.Pw(System.Console.Error); } if (op.testOptions.verbose) { pwErr.Print("Testing "); pwErr.Println(testTreebank.TextualSummary(tlp)); } if (op.testOptions.evalb) { EvalbFormatWriter.InitEVALBfiles(tlpParams); } PrintWriter pwFileOut = null; if (op.testOptions.writeOutputFiles) { string fname = op.testOptions.outputFilesPrefix + "." + op.testOptions.outputFilesExtension; try { pwFileOut = op.tlpParams.Pw(new FileOutputStream(fname)); } catch (IOException ioe) { Sharpen.Runtime.PrintStackTrace(ioe); } } PrintWriter pwStats = null; if (op.testOptions.outputkBestEquivocation != null) { try { pwStats = op.tlpParams.Pw(new FileOutputStream(op.testOptions.outputkBestEquivocation)); } catch (IOException ioe) { Sharpen.Runtime.PrintStackTrace(ioe); } } if (op.testOptions.testingThreads != 1) { MulticoreWrapper <IList <IHasWord>, IParserQuery> wrapper = new MulticoreWrapper <IList <IHasWord>, IParserQuery>(op.testOptions.testingThreads, new ParsingThreadsafeProcessor(pqFactory, pwErr)); LinkedList <Tree> goldTrees = new LinkedList <Tree>(); foreach (Tree goldTree in testTreebank) { IList <IHasWord> sentence = GetInputSentence(goldTree); goldTrees.Add(goldTree); pwErr.Println("Parsing [len. " + sentence.Count + "]: " + SentenceUtils.ListToString(sentence)); wrapper.Put(sentence); while (wrapper.Peek()) { IParserQuery pq = wrapper.Poll(); goldTree = goldTrees.Poll(); ProcessResults(pq, goldTree, pwErr, pwOut, pwFileOut, pwStats, treePrint); } } // for tree iterator wrapper.Join(); while (wrapper.Peek()) { IParserQuery pq = wrapper.Poll(); Tree goldTree_1 = goldTrees.Poll(); ProcessResults(pq, goldTree_1, pwErr, pwOut, pwFileOut, pwStats, treePrint); } } else { IParserQuery pq = pqFactory.ParserQuery(); foreach (Tree goldTree in testTreebank) { IList <CoreLabel> sentence = GetInputSentence(goldTree); pwErr.Println("Parsing [len. " + sentence.Count + "]: " + SentenceUtils.ListToString(sentence)); pq.ParseAndReport(sentence, pwErr); ProcessResults(pq, goldTree, pwErr, pwOut, pwFileOut, pwStats, treePrint); } } // for tree iterator //Done parsing...print the results of the evaluations treebankTotalTimer.Done("Testing on treebank"); if (op.testOptions.quietEvaluation) { pwErr = tlpParams.Pw(System.Console.Error); } if (saidMemMessage) { ParserUtils.PrintOutOfMemory(pwErr); } if (op.testOptions.evalb) { EvalbFormatWriter.CloseEVALBfiles(); } if (numSkippedEvals != 0) { pwErr.Printf("Unable to evaluate %d parser hypotheses due to yield mismatch\n", numSkippedEvals); } // only created here so we know what parser types are supported... IParserQuery pq_1 = pqFactory.ParserQuery(); if (summary) { if (pcfgLB != null) { pcfgLB.Display(false, pwErr); } if (pcfgChildSpecific != null) { pcfgChildSpecific.Display(false, pwErr); } if (pcfgLA != null) { pcfgLA.Display(false, pwErr); } if (pcfgCB != null) { pcfgCB.Display(false, pwErr); } if (pcfgDA != null) { pcfgDA.Display(false, pwErr); } if (pcfgTA != null) { pcfgTA.Display(false, pwErr); } if (pcfgLL != null && pq_1.GetPCFGParser() != null) { pcfgLL.Display(false, pwErr); } if (depDA != null) { depDA.Display(false, pwErr); } if (depTA != null) { depTA.Display(false, pwErr); } if (depLL != null && pq_1.GetDependencyParser() != null) { depLL.Display(false, pwErr); } if (factLB != null) { factLB.Display(false, pwErr); } if (factChildSpecific != null) { factChildSpecific.Display(false, pwErr); } if (factLA != null) { factLA.Display(false, pwErr); } if (factCB != null) { factCB.Display(false, pwErr); } if (factDA != null) { factDA.Display(false, pwErr); } if (factTA != null) { factTA.Display(false, pwErr); } if (factLL != null && pq_1.GetFactoredParser() != null) { factLL.Display(false, pwErr); } if (pcfgCatE != null) { pcfgCatE.Display(false, pwErr); } foreach (IEval eval in evals) { eval.Display(false, pwErr); } foreach (BestOfTopKEval eval_1 in topKEvals) { eval_1.Display(false, pwErr); } } // these ones only have a display mode, so display if turned on!! if (pcfgRUO != null) { pcfgRUO.Display(true, pwErr); } if (pcfgCUO != null) { pcfgCUO.Display(true, pwErr); } if (tsv) { NumberFormat nf = new DecimalFormat("0.00"); pwErr.Println("factF1\tfactDA\tfactEx\tpcfgF1\tdepDA\tfactTA\tnum"); if (factLB != null) { pwErr.Print(nf.Format(factLB.GetEvalbF1Percent())); } pwErr.Print("\t"); if (pq_1.GetDependencyParser() != null && factDA != null) { pwErr.Print(nf.Format(factDA.GetEvalbF1Percent())); } pwErr.Print("\t"); if (factLB != null) { pwErr.Print(nf.Format(factLB.GetExactPercent())); } pwErr.Print("\t"); if (pcfgLB != null) { pwErr.Print(nf.Format(pcfgLB.GetEvalbF1Percent())); } pwErr.Print("\t"); if (pq_1.GetDependencyParser() != null && depDA != null) { pwErr.Print(nf.Format(depDA.GetEvalbF1Percent())); } pwErr.Print("\t"); if (pq_1.GetPCFGParser() != null && factTA != null) { pwErr.Print(nf.Format(factTA.GetEvalbF1Percent())); } pwErr.Print("\t"); if (factLB != null) { pwErr.Print(factLB.GetNum()); } pwErr.Println(); } double f1 = 0.0; if (factLB != null) { f1 = factLB.GetEvalbF1(); } //Close files (if necessary) if (pwFileOut != null) { pwFileOut.Close(); } if (pwStats != null) { pwStats.Close(); } if (parserQueryEvals != null) { foreach (IParserQueryEval parserQueryEval in parserQueryEvals) { parserQueryEval.Display(false, pwErr); } } return(f1); }
/// <summary>Calculates both value and partial derivatives at the point x, and save them internally.</summary> protected internal override void Calculate(double[] x) { double prob = 0.0; // the log prob of the sequence given the model, which is the negation of value at this point // final double[][] weights = to2D(x); To2D(x, weights); SetWeights(weights); // the expectations over counts // first index is feature index, second index is of possible labeling // double[][] E = empty2D(); Clear2D(E); Clear2D(dropoutPriorGradTotal); MulticoreWrapper <Pair <int, bool>, Quadruple <int, double, IDictionary <int, double[]>, IDictionary <int, double[]> > > wrapper = new MulticoreWrapper <Pair <int, bool>, Quadruple <int, double, IDictionary <int, double[]>, IDictionary <int, double[]> > > (multiThreadGrad, dropoutPriorThreadProcessor); // supervised part for (int m = 0; m < totalData.Length; m++) { bool submitIsUnsup = (m >= unsupDropoutStartIndex); wrapper.Put(new Pair <int, bool>(m, submitIsUnsup)); while (wrapper.Peek()) { Quadruple <int, double, IDictionary <int, double[]>, IDictionary <int, double[]> > result = wrapper.Poll(); int docIndex = result.First(); bool isUnsup = docIndex >= unsupDropoutStartIndex; if (isUnsup) { prob += unsupDropoutScale * result.Second(); } else { prob += result.Second(); } IDictionary <int, double[]> partialDropout = result.Fourth(); if (partialDropout != null) { if (isUnsup) { Combine2DArr(dropoutPriorGradTotal, partialDropout, unsupDropoutScale); } else { Combine2DArr(dropoutPriorGradTotal, partialDropout); } } if (!isUnsup) { IDictionary <int, double[]> partialE = result.Third(); if (partialE != null) { Combine2DArr(E, partialE); } } } } wrapper.Join(); while (wrapper.Peek()) { Quadruple <int, double, IDictionary <int, double[]>, IDictionary <int, double[]> > result = wrapper.Poll(); int docIndex = result.First(); bool isUnsup = docIndex >= unsupDropoutStartIndex; if (isUnsup) { prob += unsupDropoutScale * result.Second(); } else { prob += result.Second(); } IDictionary <int, double[]> partialDropout = result.Fourth(); if (partialDropout != null) { if (isUnsup) { Combine2DArr(dropoutPriorGradTotal, partialDropout, unsupDropoutScale); } else { Combine2DArr(dropoutPriorGradTotal, partialDropout); } } if (!isUnsup) { IDictionary <int, double[]> partialE = result.Third(); if (partialE != null) { Combine2DArr(E, partialE); } } } if (double.IsNaN(prob)) { // shouldn't be the case throw new Exception("Got NaN for prob in CRFLogConditionalObjectiveFunctionWithDropout.calculate()" + " - this may well indicate numeric underflow due to overly long documents."); } // because we minimize -L(\theta) value = -prob; if (Verbose) { log.Info("value is " + System.Math.Exp(-value)); } // compute the partial derivative for each feature by comparing expected counts to empirical counts int index = 0; for (int i = 0; i < E.Length; i++) { for (int j = 0; j < E[i].Length; j++) { // because we minimize -L(\theta) derivative[index] = (E[i][j] - Ehat[i][j]); derivative[index] += dropoutScale * dropoutPriorGradTotal[i][j]; if (Verbose) { log.Info("deriv(" + i + ',' + j + ") = " + E[i][j] + " - " + Ehat[i][j] + " = " + derivative[index]); } index++; } } }
private void TrainModel(string serializedPath, Edu.Stanford.Nlp.Tagger.Common.Tagger tagger, Random random, IList <Tree> binarizedTrees, IList <IList <ITransition> > transitionLists, Treebank devTreebank, int nThreads, ICollection <string> allowedFeatures ) { double bestScore = 0.0; int bestIteration = 0; PriorityQueue <ScoredObject <PerceptronModel> > bestModels = null; if (op.TrainOptions().averagedModels > 0) { bestModels = new PriorityQueue <ScoredObject <PerceptronModel> >(op.TrainOptions().averagedModels + 1, ScoredComparator.AscendingComparator); } IList <int> indices = Generics.NewArrayList(); for (int i = 0; i < binarizedTrees.Count; ++i) { indices.Add(i); } Oracle oracle = null; if (op.TrainOptions().trainingMethod == ShiftReduceTrainOptions.TrainingMethod.Oracle) { oracle = new Oracle(binarizedTrees, op.compoundUnaries, rootStates); } IList <PerceptronModel.Update> updates = Generics.NewArrayList(); MulticoreWrapper <int, Pair <int, int> > wrapper = null; if (nThreads != 1) { updates = Java.Util.Collections.SynchronizedList(updates); wrapper = new MulticoreWrapper <int, Pair <int, int> >(op.trainOptions.trainingThreads, new PerceptronModel.TrainTreeProcessor(this, binarizedTrees, transitionLists, updates, oracle)); } IntCounter <string> featureFrequencies = null; if (op.TrainOptions().featureFrequencyCutoff > 1) { featureFrequencies = new IntCounter <string>(); } for (int iteration = 1; iteration <= op.trainOptions.trainingIterations; ++iteration) { Timing trainingTimer = new Timing(); int numCorrect = 0; int numWrong = 0; Java.Util.Collections.Shuffle(indices, random); for (int start = 0; start < indices.Count; start += op.trainOptions.batchSize) { int end = Math.Min(start + op.trainOptions.batchSize, indices.Count); Triple <IList <PerceptronModel.Update>, int, int> result = TrainBatch(indices.SubList(start, end), binarizedTrees, transitionLists, updates, oracle, wrapper); numCorrect += result.second; numWrong += result.third; foreach (PerceptronModel.Update update in result.first) { foreach (string feature in update.features) { if (allowedFeatures != null && !allowedFeatures.Contains(feature)) { continue; } Weight weights = featureWeights[feature]; if (weights == null) { weights = new Weight(); featureWeights[feature] = weights; } weights.UpdateWeight(update.goldTransition, update.delta); weights.UpdateWeight(update.predictedTransition, -update.delta); if (featureFrequencies != null) { featureFrequencies.IncrementCount(feature, (update.goldTransition >= 0 && update.predictedTransition >= 0) ? 2 : 1); } } } updates.Clear(); } trainingTimer.Done("Iteration " + iteration); log.Info("While training, got " + numCorrect + " transitions correct and " + numWrong + " transitions wrong"); OutputStats(); double labelF1 = 0.0; if (devTreebank != null) { EvaluateTreebank evaluator = new EvaluateTreebank(op, null, new ShiftReduceParser(op, this), tagger); evaluator.TestOnTreebank(devTreebank); labelF1 = evaluator.GetLBScore(); log.Info("Label F1 after " + iteration + " iterations: " + labelF1); if (labelF1 > bestScore) { log.Info("New best dev score (previous best " + bestScore + ")"); bestScore = labelF1; bestIteration = iteration; } else { log.Info("Failed to improve for " + (iteration - bestIteration) + " iteration(s) on previous best score of " + bestScore); if (op.trainOptions.stalledIterationLimit > 0 && (iteration - bestIteration >= op.trainOptions.stalledIterationLimit)) { log.Info("Failed to improve for too long, stopping training"); break; } } log.Info(); if (bestModels != null) { bestModels.Add(new ScoredObject <PerceptronModel>(new PerceptronModel(this), labelF1)); if (bestModels.Count > op.TrainOptions().averagedModels) { bestModels.Poll(); } } } if (op.TrainOptions().saveIntermediateModels&& serializedPath != null && op.trainOptions.debugOutputFrequency > 0) { string tempName = Sharpen.Runtime.Substring(serializedPath, 0, serializedPath.Length - 7) + "-" + Filename.Format(iteration) + "-" + Nf.Format(labelF1) + ".ser.gz"; ShiftReduceParser temp = new ShiftReduceParser(op, this); temp.SaveModel(tempName); } // TODO: we could save a cutoff version of the model, // especially if we also get a dev set number for it, but that // might be overkill if (iteration % 10 == 0 && op.TrainOptions().decayLearningRate > 0.0) { learningRate *= op.TrainOptions().decayLearningRate; } } // end for iterations if (wrapper != null) { wrapper.Join(); } if (bestModels != null) { if (op.TrainOptions().cvAveragedModels&& devTreebank != null) { IList <ScoredObject <PerceptronModel> > models = Generics.NewArrayList(); while (bestModels.Count > 0) { models.Add(bestModels.Poll()); } Java.Util.Collections.Reverse(models); double bestF1 = 0.0; int bestSize = 0; for (int i_1 = 1; i_1 <= models.Count; ++i_1) { log.Info("Testing with " + i_1 + " models averaged together"); // TODO: this is kind of ugly, would prefer a separate object AverageScoredModels(models.SubList(0, i_1)); ShiftReduceParser temp = new ShiftReduceParser(op, this); EvaluateTreebank evaluator = new EvaluateTreebank(temp.GetOp(), null, temp, tagger); evaluator.TestOnTreebank(devTreebank); double labelF1 = evaluator.GetLBScore(); log.Info("Label F1 for " + i_1 + " models: " + labelF1); if (labelF1 > bestF1) { bestF1 = labelF1; bestSize = i_1; } } AverageScoredModels(models.SubList(0, bestSize)); } else { AverageScoredModels(bestModels); } } // TODO: perhaps we should filter the features and then get dev // set scores. That way we can merge the models which are best // after filtering. if (featureFrequencies != null) { FilterFeatures(featureFrequencies.KeysAbove(op.TrainOptions().featureFrequencyCutoff)); } CondenseFeatures(); }
/// <summary> /// Trains a batch of trees and returns the following: a list of /// Update objects, the number of transitions correct, and the number /// of transitions wrong. /// </summary> /// <remarks> /// Trains a batch of trees and returns the following: a list of /// Update objects, the number of transitions correct, and the number /// of transitions wrong. /// If the model is trained with multiple threads, it is expected /// that a valid MulticoreWrapper is passed in which does the /// processing. In that case, the processing is done on all of the /// trees without updating any weights, which allows the results for /// multithreaded training to be reproduced. /// </remarks> private Triple <IList <PerceptronModel.Update>, int, int> TrainBatch(IList <int> indices, IList <Tree> binarizedTrees, IList <IList <ITransition> > transitionLists, IList <PerceptronModel.Update> updates, Oracle oracle, MulticoreWrapper <int, Pair <int , int> > wrapper) { int numCorrect = 0; int numWrong = 0; if (op.trainOptions.trainingThreads == 1) { foreach (int index in indices) { Pair <int, int> count = TrainTree(index, binarizedTrees, transitionLists, updates, oracle); numCorrect += count.first; numWrong += count.second; } } else { foreach (int index in indices) { wrapper.Put(index); } wrapper.Join(false); while (wrapper.Peek()) { Pair <int, int> result = wrapper.Poll(); numCorrect += result.first; numWrong += result.second; } } return(new Triple <IList <PerceptronModel.Update>, int, int>(updates, numCorrect, numWrong)); }
protected internal virtual double MultiThreadGradient(IList <int> docIDs, bool calculateEmpirical) { double objective = 0.0; // TODO: This is a bunch of unnecessary heap traffic, should all be on the stack if (multiThreadGrad > 1) { if (parallelE == null) { parallelE = new double[multiThreadGrad][][]; for (int i = 0; i < multiThreadGrad; i++) { parallelE[i] = Empty2D(); } } if (calculateEmpirical) { if (parallelEhat == null) { parallelEhat = new double[multiThreadGrad][][]; for (int i = 0; i < multiThreadGrad; i++) { parallelEhat[i] = Empty2D(); } } } } // TODO: this is a huge amount of machinery for no discernible reason MulticoreWrapper <Pair <int, IList <int> >, Pair <int, double> > wrapper = new MulticoreWrapper <Pair <int, IList <int> >, Pair <int, double> >(multiThreadGrad, (calculateEmpirical ? expectedAndEmpiricalThreadProcessor : expectedThreadProcessor)); int totalLen = docIDs.Count; int partLen = totalLen / multiThreadGrad; int currIndex = 0; for (int part = 0; part < multiThreadGrad; part++) { int endIndex = currIndex + partLen; if (part == multiThreadGrad - 1) { endIndex = totalLen; } // TODO: let's not construct a sub-list of DocIDs, unnecessary object creation, can calculate directly from ThreadID IList <int> subList = docIDs.SubList(currIndex, endIndex); wrapper.Put(new Pair <int, IList <int> >(part, subList)); currIndex = endIndex; } wrapper.Join(); // This all seems fine. May want to start running this after the joins, in case we have different end-times while (wrapper.Peek()) { Pair <int, double> result = wrapper.Poll(); int tID = result.First(); objective += result.Second(); if (multiThreadGrad > 1) { Combine2DArr(E, parallelE[tID]); if (calculateEmpirical) { Combine2DArr(Ehat, parallelEhat[tID]); } } } return(objective); }
public virtual void ParseFiles <_T0>(string[] args, int argIndex, bool tokenized, ITokenizerFactory <_T0> tokenizerFactory, string elementDelimiter, string sentenceDelimiter, IFunction <IList <IHasWord>, IList <IHasWord> > escaper, string tagDelimiter ) where _T0 : IHasWord { DocumentPreprocessor.DocType docType = (elementDelimiter == null) ? DocumentPreprocessor.DocType.Plain : DocumentPreprocessor.DocType.Xml; if (op.testOptions.verbose) { if (tokenizerFactory != null) { pwErr.Println("parseFiles: Tokenizer factory is: " + tokenizerFactory); } } Timing timer = new Timing(); // timer.start(); // constructor already starts it. //Loop over the files for (int i = argIndex; i < args.Length; i++) { string filename = args[i]; DocumentPreprocessor documentPreprocessor; if (filename.Equals("-")) { try { documentPreprocessor = new DocumentPreprocessor(IOUtils.ReaderFromStdin(op.tlpParams.GetInputEncoding()), docType); } catch (IOException e) { throw new RuntimeIOException(e); } } else { documentPreprocessor = new DocumentPreprocessor(filename, docType, op.tlpParams.GetInputEncoding()); } //Unused values are null per the main() method invocation below //null is the default for these properties documentPreprocessor.SetSentenceFinalPuncWords(tlp.SentenceFinalPunctuationWords()); documentPreprocessor.SetEscaper(escaper); documentPreprocessor.SetSentenceDelimiter(sentenceDelimiter); documentPreprocessor.SetTagDelimiter(tagDelimiter); documentPreprocessor.SetElementDelimiter(elementDelimiter); if (tokenizerFactory == null) { documentPreprocessor.SetTokenizerFactory((tokenized) ? null : tlp.GetTokenizerFactory()); } else { documentPreprocessor.SetTokenizerFactory(tokenizerFactory); } //Setup the output PrintWriter pwo = pwOut; if (op.testOptions.writeOutputFiles) { string normalizedName = filename; try { new URL(normalizedName); // this will exception if not a URL normalizedName = normalizedName.ReplaceAll("/", "_"); } catch (MalformedURLException) { } //It isn't a URL, so silently ignore string ext = (op.testOptions.outputFilesExtension == null) ? "stp" : op.testOptions.outputFilesExtension; string fname = normalizedName + '.' + ext; if (op.testOptions.outputFilesDirectory != null && !op.testOptions.outputFilesDirectory.IsEmpty()) { string fseparator = Runtime.GetProperty("file.separator"); if (fseparator == null || fseparator.IsEmpty()) { fseparator = "/"; } File fnameFile = new File(fname); fname = op.testOptions.outputFilesDirectory + fseparator + fnameFile.GetName(); } try { pwo = op.tlpParams.Pw(new FileOutputStream(fname)); } catch (IOException ioe) { throw new RuntimeIOException(ioe); } } treePrint.PrintHeader(pwo, op.tlpParams.GetOutputEncoding()); pwErr.Println("Parsing file: " + filename); int num = 0; int numProcessed = 0; if (op.testOptions.testingThreads != 1) { MulticoreWrapper <IList <IHasWord>, IParserQuery> wrapper = new MulticoreWrapper <IList <IHasWord>, IParserQuery>(op.testOptions.testingThreads, new ParsingThreadsafeProcessor(pqFactory, pwErr)); foreach (IList <IHasWord> sentence in documentPreprocessor) { num++; numSents++; int len = sentence.Count; numWords += len; pwErr.Println("Parsing [sent. " + num + " len. " + len + "]: " + SentenceUtils.ListToString(sentence, true)); wrapper.Put(sentence); while (wrapper.Peek()) { IParserQuery pq = wrapper.Poll(); ProcessResults(pq, numProcessed++, pwo); } } wrapper.Join(); while (wrapper.Peek()) { IParserQuery pq = wrapper.Poll(); ProcessResults(pq, numProcessed++, pwo); } } else { IParserQuery pq = pqFactory.ParserQuery(); foreach (IList <IHasWord> sentence in documentPreprocessor) { num++; numSents++; int len = sentence.Count; numWords += len; pwErr.Println("Parsing [sent. " + num + " len. " + len + "]: " + SentenceUtils.ListToString(sentence, true)); pq.ParseAndReport(sentence, pwErr); ProcessResults(pq, numProcessed++, pwo); } } treePrint.PrintFooter(pwo); if (op.testOptions.writeOutputFiles) { pwo.Close(); } pwErr.Println("Parsed file: " + filename + " [" + num + " sentences]."); } long millis = timer.Stop(); if (summary) { if (pcfgLL != null) { pcfgLL.Display(false, pwErr); } if (depLL != null) { depLL.Display(false, pwErr); } if (factLL != null) { factLL.Display(false, pwErr); } } if (saidMemMessage) { ParserUtils.PrintOutOfMemory(pwErr); } double wordspersec = numWords / (((double)millis) / 1000); double sentspersec = numSents / (((double)millis) / 1000); NumberFormat nf = new DecimalFormat("0.00"); // easier way! pwErr.Println("Parsed " + numWords + " words in " + numSents + " sentences (" + nf.Format(wordspersec) + " wds/sec; " + nf.Format(sentspersec) + " sents/sec)."); if (numFallback > 0) { pwErr.Println(" " + numFallback + " sentences were parsed by fallback to PCFG."); } if (numUnparsable > 0 || numNoMemory > 0 || numSkipped > 0) { pwErr.Println(" " + (numUnparsable + numNoMemory + numSkipped) + " sentences were not parsed:"); if (numUnparsable > 0) { pwErr.Println(" " + numUnparsable + " were not parsable with non-zero probability."); } if (numNoMemory > 0) { pwErr.Println(" " + numNoMemory + " were skipped because of insufficient memory."); } if (numSkipped > 0) { pwErr.Println(" " + numSkipped + " were skipped as length 0 or greater than " + op.testOptions.maxLength); } } }
/// <summary> /// An example of a command line is /// <br /> /// java -mx1g edu.stanford.nlp.parser.dvparser.CacheParseHypotheses -model /scr/horatio/dvparser/wsjPCFG.nocompact.simple.ser.gz -output cached9.simple.ser.gz -treebank /afs/ir/data/linguistic-data/Treebank/3/parsed/mrg/wsj 200-202 /// <br /> /// java -mx4g edu.stanford.nlp.parser.dvparser.CacheParseHypotheses -model ~/scr/dvparser/wsjPCFG.nocompact.simple.ser.gz -output cached.train.simple.ser.gz -treebank /afs/ir/data/linguistic-data/Treebank/3/parsed/mrg/wsj 200-2199 -numThreads 6 /// <br /> /// java -mx4g edu.stanford.nlp.parser.dvparser.CacheParseHypotheses -model ~/scr/dvparser/chinese/xinhuaPCFG.ser.gz -output cached.xinhua.train.ser.gz -treebank /afs/ir/data/linguistic-data/Chinese-Treebank/6/data/utf8/bracketed 026-270,301-499,600-999 /// </summary> /// <exception cref="System.IO.IOException"/> public static void Main(string[] args) { string parserModel = null; string output = null; IList <Pair <string, IFileFilter> > treebanks = Generics.NewArrayList(); int dvKBest = 200; int numThreads = 1; for (int argIndex = 0; argIndex < args.Length;) { if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-dvKBest")) { dvKBest = System.Convert.ToInt32(args[argIndex + 1]); argIndex += 2; continue; } if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-parser") || args[argIndex].Equals("-model")) { parserModel = args[argIndex + 1]; argIndex += 2; continue; } if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-output")) { output = args[argIndex + 1]; argIndex += 2; continue; } if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-treebank")) { Pair <string, IFileFilter> treebankDescription = ArgUtils.GetTreebankDescription(args, argIndex, "-treebank"); argIndex = argIndex + ArgUtils.NumSubArgs(args, argIndex) + 1; treebanks.Add(treebankDescription); continue; } if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-numThreads")) { numThreads = System.Convert.ToInt32(args[argIndex + 1]); argIndex += 2; continue; } throw new ArgumentException("Unknown argument " + args[argIndex]); } if (parserModel == null) { throw new ArgumentException("Need to supply a parser model with -model"); } if (output == null) { throw new ArgumentException("Need to supply an output filename with -output"); } if (treebanks.IsEmpty()) { throw new ArgumentException("Need to supply a treebank with -treebank"); } log.Info("Writing output to " + output); log.Info("Loading parser model " + parserModel); log.Info("Writing " + dvKBest + " hypothesis trees for each tree"); LexicalizedParser parser = ((LexicalizedParser)LexicalizedParser.LoadModel(parserModel, "-dvKBest", int.ToString(dvKBest))); CacheParseHypotheses cacher = new CacheParseHypotheses(parser); ITreeTransformer transformer = DVParser.BuildTrainTransformer(parser.GetOp()); IList <Tree> sentences = new List <Tree>(); foreach (Pair <string, IFileFilter> description in treebanks) { log.Info("Reading trees from " + description.first); Treebank treebank = parser.GetOp().tlpParams.MemoryTreebank(); treebank.LoadPath(description.first, description.second); treebank = treebank.Transform(transformer); Sharpen.Collections.AddAll(sentences, treebank); } log.Info("Processing " + sentences.Count + " trees"); IList <Pair <Tree, byte[]> > cache = Generics.NewArrayList(); transformer = new SynchronizedTreeTransformer(transformer); MulticoreWrapper <Tree, Pair <Tree, byte[]> > wrapper = new MulticoreWrapper <Tree, Pair <Tree, byte[]> >(numThreads, new CacheParseHypotheses.CacheProcessor(cacher, parser, dvKBest, transformer)); foreach (Tree tree in sentences) { wrapper.Put(tree); while (wrapper.Peek()) { cache.Add(wrapper.Poll()); if (cache.Count % 10 == 0) { System.Console.Out.WriteLine("Processed " + cache.Count + " trees"); } } } wrapper.Join(); while (wrapper.Peek()) { cache.Add(wrapper.Poll()); if (cache.Count % 10 == 0) { System.Console.Out.WriteLine("Processed " + cache.Count + " trees"); } } System.Console.Out.WriteLine("Finished processing " + cache.Count + " trees"); IOUtils.WriteObjectToFile(cache, output); }
// fill value & derivative protected internal override void Calculate(double[] theta) { dvModel.VectorToParams(theta); double localValue = 0.0; double[] localDerivative = new double[theta.Length]; TwoDimensionalMap <string, string, SimpleMatrix> binaryW_dfsG; TwoDimensionalMap <string, string, SimpleMatrix> binaryW_dfsB; binaryW_dfsG = TwoDimensionalMap.TreeMap(); binaryW_dfsB = TwoDimensionalMap.TreeMap(); TwoDimensionalMap <string, string, SimpleMatrix> binaryScoreDerivativesG; TwoDimensionalMap <string, string, SimpleMatrix> binaryScoreDerivativesB; binaryScoreDerivativesG = TwoDimensionalMap.TreeMap(); binaryScoreDerivativesB = TwoDimensionalMap.TreeMap(); IDictionary <string, SimpleMatrix> unaryW_dfsG; IDictionary <string, SimpleMatrix> unaryW_dfsB; unaryW_dfsG = new SortedDictionary <string, SimpleMatrix>(); unaryW_dfsB = new SortedDictionary <string, SimpleMatrix>(); IDictionary <string, SimpleMatrix> unaryScoreDerivativesG; IDictionary <string, SimpleMatrix> unaryScoreDerivativesB; unaryScoreDerivativesG = new SortedDictionary <string, SimpleMatrix>(); unaryScoreDerivativesB = new SortedDictionary <string, SimpleMatrix>(); IDictionary <string, SimpleMatrix> wordVectorDerivativesG = new SortedDictionary <string, SimpleMatrix>(); IDictionary <string, SimpleMatrix> wordVectorDerivativesB = new SortedDictionary <string, SimpleMatrix>(); foreach (TwoDimensionalMap.Entry <string, string, SimpleMatrix> entry in dvModel.binaryTransform) { int numRows = entry.GetValue().NumRows(); int numCols = entry.GetValue().NumCols(); binaryW_dfsG.Put(entry.GetFirstKey(), entry.GetSecondKey(), new SimpleMatrix(numRows, numCols)); binaryW_dfsB.Put(entry.GetFirstKey(), entry.GetSecondKey(), new SimpleMatrix(numRows, numCols)); binaryScoreDerivativesG.Put(entry.GetFirstKey(), entry.GetSecondKey(), new SimpleMatrix(1, numRows)); binaryScoreDerivativesB.Put(entry.GetFirstKey(), entry.GetSecondKey(), new SimpleMatrix(1, numRows)); } foreach (KeyValuePair <string, SimpleMatrix> entry_1 in dvModel.unaryTransform) { int numRows = entry_1.Value.NumRows(); int numCols = entry_1.Value.NumCols(); unaryW_dfsG[entry_1.Key] = new SimpleMatrix(numRows, numCols); unaryW_dfsB[entry_1.Key] = new SimpleMatrix(numRows, numCols); unaryScoreDerivativesG[entry_1.Key] = new SimpleMatrix(1, numRows); unaryScoreDerivativesB[entry_1.Key] = new SimpleMatrix(1, numRows); } if (op.trainOptions.trainWordVectors) { foreach (KeyValuePair <string, SimpleMatrix> entry_2 in dvModel.wordVectors) { int numRows = entry_2.Value.NumRows(); int numCols = entry_2.Value.NumCols(); wordVectorDerivativesG[entry_2.Key] = new SimpleMatrix(numRows, numCols); wordVectorDerivativesB[entry_2.Key] = new SimpleMatrix(numRows, numCols); } } // Some optimization methods prints out a line without an end, so our // debugging statements are misaligned Timing scoreTiming = new Timing(); scoreTiming.Doing("Scoring trees"); int treeNum = 0; MulticoreWrapper <Tree, Pair <DeepTree, DeepTree> > wrapper = new MulticoreWrapper <Tree, Pair <DeepTree, DeepTree> >(op.trainOptions.trainingThreads, new DVParserCostAndGradient.ScoringProcessor(this)); foreach (Tree tree in trainingBatch) { wrapper.Put(tree); } wrapper.Join(); scoreTiming.Done(); while (wrapper.Peek()) { Pair <DeepTree, DeepTree> result = wrapper.Poll(); DeepTree goldTree = result.first; DeepTree bestTree = result.second; StringBuilder treeDebugLine = new StringBuilder(); Formatter formatter = new Formatter(treeDebugLine); bool isDone = (Math.Abs(bestTree.GetScore() - goldTree.GetScore()) <= 0.00001 || goldTree.GetScore() > bestTree.GetScore()); string done = isDone ? "done" : string.Empty; formatter.Format("Tree %6d Highest tree: %12.4f Correct tree: %12.4f %s", treeNum, bestTree.GetScore(), goldTree.GetScore(), done); log.Info(treeDebugLine.ToString()); if (!isDone) { // if the gold tree is better than the best hypothesis tree by // a large enough margin, then the score difference will be 0 // and we ignore the tree double valueDelta = bestTree.GetScore() - goldTree.GetScore(); //double valueDelta = Math.max(0.0, - scoreGold + bestScore); localValue += valueDelta; // get the context words for this tree - should be the same // for either goldTree or bestTree IList <string> words = GetContextWords(goldTree.GetTree()); // The derivatives affected by this tree are only based on the // nodes present in this tree, eg not all matrix derivatives // will be affected by this tree BackpropDerivative(goldTree.GetTree(), words, goldTree.GetVectors(), binaryW_dfsG, unaryW_dfsG, binaryScoreDerivativesG, unaryScoreDerivativesG, wordVectorDerivativesG); BackpropDerivative(bestTree.GetTree(), words, bestTree.GetVectors(), binaryW_dfsB, unaryW_dfsB, binaryScoreDerivativesB, unaryScoreDerivativesB, wordVectorDerivativesB); } ++treeNum; } double[] localDerivativeGood; double[] localDerivativeB; if (op.trainOptions.trainWordVectors) { localDerivativeGood = NeuralUtils.ParamsToVector(theta.Length, binaryW_dfsG.ValueIterator(), unaryW_dfsG.Values.GetEnumerator(), binaryScoreDerivativesG.ValueIterator(), unaryScoreDerivativesG.Values.GetEnumerator(), wordVectorDerivativesG.Values .GetEnumerator()); localDerivativeB = NeuralUtils.ParamsToVector(theta.Length, binaryW_dfsB.ValueIterator(), unaryW_dfsB.Values.GetEnumerator(), binaryScoreDerivativesB.ValueIterator(), unaryScoreDerivativesB.Values.GetEnumerator(), wordVectorDerivativesB.Values .GetEnumerator()); } else { localDerivativeGood = NeuralUtils.ParamsToVector(theta.Length, binaryW_dfsG.ValueIterator(), unaryW_dfsG.Values.GetEnumerator(), binaryScoreDerivativesG.ValueIterator(), unaryScoreDerivativesG.Values.GetEnumerator()); localDerivativeB = NeuralUtils.ParamsToVector(theta.Length, binaryW_dfsB.ValueIterator(), unaryW_dfsB.Values.GetEnumerator(), binaryScoreDerivativesB.ValueIterator(), unaryScoreDerivativesB.Values.GetEnumerator()); } // correct - highest for (int i = 0; i < localDerivativeGood.Length; i++) { localDerivative[i] = localDerivativeB[i] - localDerivativeGood[i]; } // TODO: this is where we would combine multiple costs if we had parallelized the calculation value = localValue; derivative = localDerivative; // normalizing by training batch size value = (1.0 / trainingBatch.Count) * value; ArrayMath.MultiplyInPlace(derivative, (1.0 / trainingBatch.Count)); // add regularization to cost: double[] currentParams = dvModel.ParamsToVector(); double regCost = 0; foreach (double currentParam in currentParams) { regCost += currentParam * currentParam; } regCost = op.trainOptions.regCost * 0.5 * regCost; value += regCost; // add regularization to gradient ArrayMath.MultiplyInPlace(currentParams, op.trainOptions.regCost); ArrayMath.PairwiseAddInPlace(derivative, currentParams); }
/// <exception cref="System.Exception"/> public static void RunCoref(Properties props) { /* * property, environment setting */ Redwood.HideChannelsEverywhere("debug-cluster", "debug-mention", "debug-preprocessor", "debug-docreader", "debug-mergethres", "debug-featureselection", "debug-md"); int nThreads = HybridCorefProperties.GetThreadCounts(props); string timeStamp = Calendar.GetInstance().GetTime().ToString().ReplaceAll("\\s", "-").ReplaceAll(":", "-"); Logger logger = Logger.GetLogger(typeof(Edu.Stanford.Nlp.Coref.Hybrid.HybridCorefSystem).FullName); // set log file path if (props.Contains(HybridCorefProperties.LogProp)) { File logFile = new File(props.GetProperty(HybridCorefProperties.LogProp)); RedwoodConfiguration.Current().Handlers(RedwoodConfiguration.Handlers.File(logFile)).Apply(); Redwood.Log("Starting coref log"); } log.Info(props.ToString()); if (HybridCorefProperties.CheckMemory(props)) { CheckMemoryUsage(); } Edu.Stanford.Nlp.Coref.Hybrid.HybridCorefSystem cs = new Edu.Stanford.Nlp.Coref.Hybrid.HybridCorefSystem(props); /* * output setting */ // prepare conll output string goldOutput = null; string beforeCorefOutput = null; string afterCorefOutput = null; PrintWriter writerGold = null; PrintWriter writerBeforeCoref = null; PrintWriter writerAfterCoref = null; if (HybridCorefProperties.DoScore(props)) { string pathOutput = CorefProperties.ConllOutputPath(props); (new File(pathOutput)).Mkdir(); goldOutput = pathOutput + "output-" + timeStamp + ".gold.txt"; beforeCorefOutput = pathOutput + "output-" + timeStamp + ".predicted.txt"; afterCorefOutput = pathOutput + "output-" + timeStamp + ".coref.predicted.txt"; writerGold = new PrintWriter(new FileOutputStream(goldOutput)); writerBeforeCoref = new PrintWriter(new FileOutputStream(beforeCorefOutput)); writerAfterCoref = new PrintWriter(new FileOutputStream(afterCorefOutput)); } // run coref MulticoreWrapper <Pair <Document, Edu.Stanford.Nlp.Coref.Hybrid.HybridCorefSystem>, StringBuilder[]> wrapper = new MulticoreWrapper <Pair <Document, Edu.Stanford.Nlp.Coref.Hybrid.HybridCorefSystem>, StringBuilder[]>(nThreads, new _IThreadsafeProcessor_134 ()); // conll output and logs DateTime startTime = null; if (HybridCorefProperties.CheckTime(props)) { startTime = new DateTime(); System.Console.Error.Printf("END-TO-END COREF Start time: %s\n", startTime); } // run processes int docCnt = 0; while (true) { Document document = cs.docMaker.NextDoc(); if (document == null) { break; } wrapper.Put(Pair.MakePair(document, cs)); docCnt = LogOutput(wrapper, writerGold, writerBeforeCoref, writerAfterCoref, docCnt); } // Finished reading the input. Wait for jobs to finish wrapper.Join(); docCnt = LogOutput(wrapper, writerGold, writerBeforeCoref, writerAfterCoref, docCnt); IOUtils.CloseIgnoringExceptions(writerGold); IOUtils.CloseIgnoringExceptions(writerBeforeCoref); IOUtils.CloseIgnoringExceptions(writerAfterCoref); if (HybridCorefProperties.CheckTime(props)) { System.Console.Error.Printf("END-TO-END COREF Elapsed time: %.3f seconds\n", (((new DateTime()).GetTime() - startTime.GetTime()) / 1000F)); } // System.err.printf("CORENLP PROCESS TIME TOTAL: %.3f seconds\n", cs.mentionExtractor.corenlpProcessTime); if (HybridCorefProperties.CheckMemory(props)) { CheckMemoryUsage(); } // scoring if (HybridCorefProperties.DoScore(props)) { string summary = CorefScorer.GetEvalSummary(CorefProperties.GetScorerPath(props), goldOutput, beforeCorefOutput); CorefScorer.PrintScoreSummary(summary, logger, false); summary = CorefScorer.GetEvalSummary(CorefProperties.GetScorerPath(props), goldOutput, afterCorefOutput); CorefScorer.PrintScoreSummary(summary, logger, true); CorefScorer.PrintFinalConllScore(summary); } }
/// <summary>Test on a file containing correct tags already.</summary> /// <remarks> /// Test on a file containing correct tags already. when init'ing from trees /// TODO: Add the ability to have a second transformer to transform output back; possibly combine this method /// with method below /// </remarks> /// <exception cref="System.IO.IOException"/> private void Test() { numSentences = 0; confusionMatrix = new ConfusionMatrix <string>(); PrintFile pf = null; PrintFile pf1 = null; PrintFile pf3 = null; if (writeWords) { pf = new PrintFile(saveRoot + ".words"); } if (writeUnknDict) { pf1 = new PrintFile(saveRoot + ".un.dict"); } if (writeTopWords) { pf3 = new PrintFile(saveRoot + ".words.top"); } bool verboseResults = config.GetVerboseResults(); if (config.GetNThreads() != 1) { MulticoreWrapper <IList <TaggedWord>, TestSentence> wrapper = new MulticoreWrapper <IList <TaggedWord>, TestSentence>(config.GetNThreads(), new TestClassifier.TestSentenceProcessor(maxentTagger)); foreach (IList <TaggedWord> taggedSentence in fileRecord.Reader()) { wrapper.Put(taggedSentence); while (wrapper.Peek()) { ProcessResults(wrapper.Poll(), pf, pf1, pf3, verboseResults); } } wrapper.Join(); while (wrapper.Peek()) { ProcessResults(wrapper.Poll(), pf, pf1, pf3, verboseResults); } } else { foreach (IList <TaggedWord> taggedSentence in fileRecord.Reader()) { TestSentence testS = new TestSentence(maxentTagger); testS.SetCorrectTags(taggedSentence); testS.TagSentence(taggedSentence, false); ProcessResults(testS, pf, pf1, pf3, verboseResults); } } if (pf != null) { pf.Close(); } if (pf1 != null) { pf1.Close(); } if (pf3 != null) { pf3.Close(); } }