Esempio n. 1
0
        public void TestMovieLensSingleDomain()
        {
            int numDomains = 1;

            // load data
            var movieLensReader = new MovieLensCrossDomainReader(Paths.MovieLens1MMovies, Paths.MovieLens1M);
            var container       = new MovieLensCrossDomainContainer(numDomains);

            movieLensReader.LoadData(container);

            // set taget and active domains
            var targetDomain = container.SpecifyTargetDomain("ml0");

            container.PrintStatistics();

            var startTime = DateTime.Now;

            var splitter = new CrossDomainSimpleSplitter(container, 0.25f);

            // recommender with non-CrossDomain feature builder
            var model = new MatrixFactorization();

            model.NumIter        = 50;
            model.NumFactors     = 8;
            model.Regularization = 0.1f;
            //var recommender = new MediaLiteRatingPredictor(model);
            var recommender = new LibFmTrainTester();

            // evaluation
            var ctx = new EvalutationContext <ItemRating>(recommender, splitter);
            var ep  = new EvaluationPipeline <ItemRating>(ctx);

            ep.Evaluators.Add(new RMSE());
            ep.Evaluators.Add(new MAE());
            ep.Run();
            var duration = (int)DateTime.Now.Subtract(startTime).TotalMilliseconds;

            Console.WriteLine("RMSE\tDuration\n{0}\t{1}", ctx["RMSE"], duration);

            //container.CreateClusterFiles(Paths.MovieLens1M.GetDirectoryPath() + "\\movies.clust.raw", Paths.MovieLens1M.GetDirectoryPath() + "\\movies.clust.feat");
            //container.WriteClusters(Paths.MovieLens1M.GetDirectoryPath() + "\\movies.clust");
        }
Esempio n. 2
0
        public void TestMovieLensAllDomains(int numDomains)
        {
            var numAuxRatings = new List <int> {
                1
            };

            var movieLensReader = new MovieLensCrossDomainReader(Paths.MovieLens1MMovies, Paths.MovieLens1M);
            var container       = new MovieLensCrossDomainContainer(numDomains, false);

            movieLensReader.LoadData(container);

            double[,] rmseMatrix   = new double[numAuxRatings.Count, numDomains];
            int[,] durationsMatrix = new int[numAuxRatings.Count, numDomains];
            int[] numUsers   = new int[numDomains];
            int[] numItems   = new int[numDomains];
            int[] numRatings = new int[numDomains];

            int domainIndex = 0;

            foreach (Domain d in container.Domains.Values)
            {
                var targetDomain = container.SpecifyTargetDomain(d.Id);
                Console.WriteLine("Target domain: {0}", d.ToString());

                var splitter = new CrossDomainSimpleSplitter(container, 0.25f);

                int numAuxIndex = 0;

                foreach (var num in numAuxRatings)
                {
                    var startTime = DateTime.Now;

                    LibFmTrainTester recommender;
                    CrossDomainLibFmFeatureBuilder featureBuilder = null;

                    if (num == 0)
                    {
                        recommender = new LibFmTrainTester(experimentId: num.ToString());
                    }
                    else
                    {
                        featureBuilder = new CrossDomainLibFmFeatureBuilder(targetDomain, num);
                        recommender    = new LibFmTrainTester(experimentId: num.ToString(), featureBuilder: featureBuilder);
                    }

                    var ctx = new EvalutationContext <ItemRating>(recommender, splitter);
                    var ep  = new EvaluationPipeline <ItemRating>(ctx);
                    ep.Evaluators.Add(new RMSE());
                    ep.Run();

                    var duration = DateTime.Now.Subtract(startTime);

                    rmseMatrix[numAuxIndex, domainIndex]      = recommender.RMSE;
                    durationsMatrix[numAuxIndex, domainIndex] = (int)duration.TotalMilliseconds;

                    numAuxIndex++;
                }

                numUsers[domainIndex]   = d.Ratings.Select(r => r.User.Id).Distinct().Count();
                numItems[domainIndex]   = d.Ratings.Select(r => r.Item.Id).Distinct().Count();
                numRatings[domainIndex] = d.Ratings.Count;

                domainIndex++;
            }


            // Write RMSEs
            Console.WriteLine("\nRMSEs:\n");

            string header = Enumerable.Range(1, numDomains).Select(i => "D" + i).Aggregate((a, b) => a + "\t" + b);

            Console.WriteLine("Num aux. ratings\t" + header);

            for (int i = 0; i < numAuxRatings.Count; i++)
            {
                Console.Write(numAuxRatings[i]);
                for (int j = 0; j < numDomains; j++)
                {
                    Console.Write("\t" + rmseMatrix[i, j]);
                }
                Console.WriteLine();
            }

            // Write domain statistics
            string users   = numUsers.Select(c => c.ToString()).Aggregate((a, b) => a + "\t" + b);
            string items   = numItems.Select(c => c.ToString()).Aggregate((a, b) => a + "\t" + b);
            string ratings = numRatings.Select(c => c.ToString()).Aggregate((a, b) => a + "\t" + b);

            Console.WriteLine();
            Console.WriteLine("Num Users\t" + users);
            Console.WriteLine("Num Items\t" + items);
            Console.WriteLine("Num Ratings\t" + ratings);

            // Write times
            Console.WriteLine("\nTimes:\n");

            header = Enumerable.Range(1, numDomains).Select(i => "T" + i).Aggregate((a, b) => a + "\t" + b);
            Console.WriteLine("Num aux. ratings\t" + header);

            for (int i = 0; i < numAuxRatings.Count; i++)
            {
                Console.Write(numAuxRatings[i]);
                for (int j = 0; j < numDomains; j++)
                {
                    Console.Write("\t" + durationsMatrix[i, j]);
                }
                Console.WriteLine();
            }

            Console.WriteLine("\n");
        }