Esempio n. 1
0
        /// <summary>
        /// 测试参数加权平差
        /// </summary>
        public static void Test()
        {
            Random random = new Random();//观测噪声

            double[][] A = MatrixUtil.CreateIdentity(6);
            double[][] L = MatrixUtil.Create(6, 1);
            for (int i = 0; i < L.Length; i++)
            {
                L[i][0] = i + 1 + random.NextDouble() - 0.5;
            }
            double[][] QL  = MatrixUtil.CreateDiagonal(6, 1);
            double[][] Xa0 = MatrixUtil.Create(3, 1);
            for (int i = 0; i < Xa0.Length; i++)
            {
                Xa0[i][0] = i + 1;
            }
            double[][] Qx0 = MatrixUtil.CreateDiagonal(3, 0.001);

            //   WeightedParamAdjustment adjust = new WeightedParamAdjustment(A, L, QL, Xa0, Qx0);
        }
Esempio n. 2
0
        /// <summary>
        /// 根据新的名称列表,生成新的矩阵。
        /// </summary>
        /// <param name="newParamNames">新矩阵行列名称</param>
        /// <param name="DefaultValue">默认非对角线数值</param>
        /// <param name="DefaultDiagonalValue">默认对角线数值的平方根</param>
        /// <returns></returns>
        public double[][] GetNewMatrix(List <string> newParamNames, double defaultVal, double DefaultDiagonalValue)
        {
            int newLen = newParamNames.Count;

            double[][] newMatrix = MatrixUtil.CreateDiagonal(newLen, 0);
            for (int i = 0; i < newLen; i++)
            {
                string      name = newParamNames[i];
                NamedVector sat  = null;
                if (dict.ContainsKey(name))
                {
                    sat = dict[name];
                }
                else
                {
                    sat = new NamedVector(name, defaultVal, DefaultDiagonalValue);
                }
                for (int j = 0; j < newLen; j++)
                {
                    newMatrix[i][j] = sat.GetValue(newParamNames[j]);
                }
            }
            return(newMatrix);
        }
Esempio n. 3
0
        private WeightedVector BuildObservation()
        {
            var cova = MatrixUtil.CreateDiagonal(1, ObsValue.Variance);

            return(new WeightedVector(new double[] { ObsValue.Value }, cova));
        }