Esempio n. 1
0
        //javadoc: CascadeClassifier::detectMultiScale2(image, objects, numDetections)
        public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections)
        {
            ThrowIfDisposed();
            if (image != null)
            {
                image.ThrowIfDisposed();
            }
            if (objects != null)
            {
                objects.ThrowIfDisposed();
            }
            if (numDetections != null)
            {
                numDetections.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat objects_mat       = objects;
            Mat numDetections_mat = numDetections;
            objdetect_CascadeClassifier_detectMultiScale2_15(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj);

            return;
#else
            return;
#endif
        }
Esempio n. 2
0
        /**
         * Given the {code input} frame, create input blob, run net and return result detections.
         * param classIds Class indexes in result detection.
         * param confidences A set of corresponding confidences.
         * param boxes A set of bounding boxes.
         * param frame automatically generated
         */
        public void detect(Mat frame, MatOfInt classIds, MatOfFloat confidences, MatOfRect boxes)
        {
            ThrowIfDisposed();
            if (frame != null)
            {
                frame.ThrowIfDisposed();
            }
            if (classIds != null)
            {
                classIds.ThrowIfDisposed();
            }
            if (confidences != null)
            {
                confidences.ThrowIfDisposed();
            }
            if (boxes != null)
            {
                boxes.ThrowIfDisposed();
            }
            Mat classIds_mat    = classIds;
            Mat confidences_mat = confidences;
            Mat boxes_mat       = boxes;

            dnn_DetectionModel_detect_12(nativeObj, frame.nativeObj, classIds_mat.nativeObj, confidences_mat.nativeObj, boxes_mat.nativeObj);
        }
Esempio n. 3
0
        //javadoc: CascadeClassifier::detectMultiScale2(image, objects, numDetections, scaleFactor, minNeighbors, flags, minSize)
        public void detectMultiScale2(Mat image, MatOfRect objects, MatOfInt numDetections, double scaleFactor, int minNeighbors, int flags, Size minSize)
        {
            ThrowIfDisposed();
            if (image != null)
            {
                image.ThrowIfDisposed();
            }
            if (objects != null)
            {
                objects.ThrowIfDisposed();
            }
            if (numDetections != null)
            {
                numDetections.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat objects_mat       = objects;
            Mat numDetections_mat = numDetections;
            objdetect_CascadeClassifier_detectMultiScale2_11(nativeObj, image.nativeObj, objects_mat.nativeObj, numDetections_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height);

            return;
#else
            return;
#endif
        }
Esempio n. 4
0
        //
        // C++:  void cv::xfeatures2d::matchLOGOS(vector_KeyPoint keypoints1, vector_KeyPoint keypoints2, vector_int nn1, vector_int nn2, vector_DMatch matches1to2)
        //

        /**
         * LOGOS (Local geometric support for high-outlier spatial verification) feature matching strategy described in CITE: Lowry2018LOGOSLG .
         *     param keypoints1 Input keypoints of image1.
         *     param keypoints2 Input keypoints of image2.
         *     param nn1 Index to the closest BoW centroid for each descriptors of image1.
         *     param nn2 Index to the closest BoW centroid for each descriptors of image2.
         *     param matches1to2 Matches returned by the LOGOS matching strategy.
         *     <b>Note:</b>
         *         This matching strategy is suitable for features matching against large scale database.
         *         First step consists in constructing the bag-of-words (BoW) from a representative image database.
         *         Image descriptors are then represented by their closest codevector (nearest BoW centroid).
         */
        public static void matchLOGOS(MatOfKeyPoint keypoints1, MatOfKeyPoint keypoints2, MatOfInt nn1, MatOfInt nn2, MatOfDMatch matches1to2)
        {
            if (keypoints1 != null)
            {
                keypoints1.ThrowIfDisposed();
            }
            if (keypoints2 != null)
            {
                keypoints2.ThrowIfDisposed();
            }
            if (nn1 != null)
            {
                nn1.ThrowIfDisposed();
            }
            if (nn2 != null)
            {
                nn2.ThrowIfDisposed();
            }
            if (matches1to2 != null)
            {
                matches1to2.ThrowIfDisposed();
            }
            Mat keypoints1_mat  = keypoints1;
            Mat keypoints2_mat  = keypoints2;
            Mat nn1_mat         = nn1;
            Mat nn2_mat         = nn2;
            Mat matches1to2_mat = matches1to2;

            xfeatures2d_Xfeatures2d_matchLOGOS_10(keypoints1_mat.nativeObj, keypoints2_mat.nativeObj, nn1_mat.nativeObj, nn2_mat.nativeObj, matches1to2_mat.nativeObj);
        }
Esempio n. 5
0
        //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minSize)
        public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize)
        {
            ThrowIfDisposed();
            if (image != null)
            {
                image.ThrowIfDisposed();
            }
            if (objects != null)
            {
                objects.ThrowIfDisposed();
            }
            if (rejectLevels != null)
            {
                rejectLevels.ThrowIfDisposed();
            }
            if (levelWeights != null)
            {
                levelWeights.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat objects_mat      = objects;
            Mat rejectLevels_mat = rejectLevels;
            Mat levelWeights_mat = levelWeights;
            objdetect_CascadeClassifier_detectMultiScale3_12(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height);

            return;
#else
            return;
#endif
        }
Esempio n. 6
0
        //javadoc: NMSBoxesRotated(bboxes, scores, score_threshold, nms_threshold, indices)
        public static void NMSBoxesRotated(MatOfRotatedRect bboxes, MatOfFloat scores, float score_threshold, float nms_threshold, MatOfInt indices)
        {
            if (bboxes != null)
            {
                bboxes.ThrowIfDisposed();
            }
            if (scores != null)
            {
                scores.ThrowIfDisposed();
            }
            if (indices != null)
            {
                indices.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat bboxes_mat  = bboxes;
            Mat scores_mat  = scores;
            Mat indices_mat = indices;
            dnn_Dnn_NMSBoxesRotated_12(bboxes_mat.nativeObj, scores_mat.nativeObj, score_threshold, nms_threshold, indices_mat.nativeObj);

            return;
#else
            return;
#endif
        }
Esempio n. 7
0
        //
        // C++:  void cv::dnn::Net::getMemoryConsumption(int layerId, MatShape netInputShape, size_t& weights, size_t& blobs)
        //

        //javadoc: Net::getMemoryConsumption(layerId, netInputShape, weights, blobs)
        public void getMemoryConsumption(int layerId, MatOfInt netInputShape, long[] weights, long[] blobs)
        {
            ThrowIfDisposed();
            if (netInputShape != null)
            {
                netInputShape.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat      netInputShape_mat = netInputShape;
            double[] weights_out       = new double[1];
            double[] blobs_out         = new double[1];
            dnn_Net_getMemoryConsumption_11(nativeObj, layerId, netInputShape_mat.nativeObj, weights_out, blobs_out);
            if (weights != null)
            {
                weights [0] = (long)weights_out [0];
            }
            if (blobs != null)
            {
                blobs [0] = (long)blobs_out [0];
            }
            return;
#else
            return;
#endif
        }
Esempio n. 8
0
        //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights)
        public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights)
        {
            ThrowIfDisposed();
            if (image != null)
            {
                image.ThrowIfDisposed();
            }
            if (objects != null)
            {
                objects.ThrowIfDisposed();
            }
            if (rejectLevels != null)
            {
                rejectLevels.ThrowIfDisposed();
            }
            if (levelWeights != null)
            {
                levelWeights.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat objects_mat      = objects;
            Mat rejectLevels_mat = rejectLevels;
            Mat levelWeights_mat = levelWeights;
            objdetect_CascadeClassifier_detectMultiScale3_16(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj);

            return;
#else
            return;
#endif
        }
Esempio n. 9
0
        //
        // C++: static Ptr_BRISK cv::BRISK::create(int thresh, int octaves, vector_float radiusList, vector_int numberList, float dMax = 5.85f, float dMin = 8.2f, vector_int indexChange = std::vector<int>())
        //

        //javadoc: BRISK::create(thresh, octaves, radiusList, numberList, dMax, dMin, indexChange)
        public static BRISK create(int thresh, int octaves, MatOfFloat radiusList, MatOfInt numberList, float dMax, float dMin, MatOfInt indexChange)
        {
            if (radiusList != null)
            {
                radiusList.ThrowIfDisposed();
            }
            if (numberList != null)
            {
                numberList.ThrowIfDisposed();
            }
            if (indexChange != null)
            {
                indexChange.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat   radiusList_mat  = radiusList;
            Mat   numberList_mat  = numberList;
            Mat   indexChange_mat = indexChange;
            BRISK retVal          = BRISK.__fromPtr__(features2d_BRISK_create_10(thresh, octaves, radiusList_mat.nativeObj, numberList_mat.nativeObj, dMax, dMin, indexChange_mat.nativeObj));

            return(retVal);
#else
            return(null);
#endif
        }
Esempio n. 10
0
        //
        // C++: static Ptr_FREAK cv::xfeatures2d::FREAK::create(bool orientationNormalized = true, bool scaleNormalized = true, float patternScale = 22.0f, int nOctaves = 4, vector_int selectedPairs = std::vector<int>())
        //

        /**
         * param orientationNormalized Enable orientation normalization.
         *     param scaleNormalized Enable scale normalization.
         *     param patternScale Scaling of the description pattern.
         *     param nOctaves Number of octaves covered by the detected keypoints.
         *     param selectedPairs (Optional) user defined selected pairs indexes,
         * return automatically generated
         */
        public static FREAK create(bool orientationNormalized, bool scaleNormalized, float patternScale, int nOctaves, MatOfInt selectedPairs)
        {
            if (selectedPairs != null)
            {
                selectedPairs.ThrowIfDisposed();
            }
            Mat selectedPairs_mat = selectedPairs;

            return(FREAK.__fromPtr__(xfeatures2d_FREAK_create_10(orientationNormalized, scaleNormalized, patternScale, nOctaves, selectedPairs_mat.nativeObj)));
        }
Esempio n. 11
0
        //
        // C++:   cv::VideoWriter::VideoWriter(String filename, int apiPreference, int fourcc, double fps, Size frameSize, vector_int _params)
        //

        public VideoWriter(string filename, int apiPreference, int fourcc, double fps, Size frameSize, MatOfInt _params)
        {
            if (_params != null)
            {
                _params.ThrowIfDisposed();
            }
            Mat _params_mat = _params;

            nativeObj = videoio_VideoWriter_VideoWriter_12(filename, apiPreference, fourcc, fps, frameSize.width, frameSize.height, _params_mat.nativeObj);
        }
Esempio n. 12
0
        //
        // C++:  void cv::xfeatures2d::PCTSignatures::setInitSeedIndexes(vector_int initSeedIndexes)
        //

        /**
         * Initial seed indexes for the k-means algorithm.
         * param initSeedIndexes automatically generated
         */
        public void setInitSeedIndexes(MatOfInt initSeedIndexes)
        {
            ThrowIfDisposed();
            if (initSeedIndexes != null)
            {
                initSeedIndexes.ThrowIfDisposed();
            }
            Mat initSeedIndexes_mat = initSeedIndexes;

            xfeatures2d_PCTSignatures_setInitSeedIndexes_10(nativeObj, initSeedIndexes_mat.nativeObj);
        }
Esempio n. 13
0
        //
        // C++:  bool cv::VideoWriter::open(String filename, int fourcc, double fps, Size frameSize, vector_int _params)
        //

        public bool open(string filename, int fourcc, double fps, Size frameSize, MatOfInt _params)
        {
            ThrowIfDisposed();
            if (_params != null)
            {
                _params.ThrowIfDisposed();
            }
            Mat _params_mat = _params;

            return(videoio_VideoWriter_open_15(nativeObj, filename, fourcc, fps, frameSize.width, frameSize.height, _params_mat.nativeObj));
        }
Esempio n. 14
0
        //
        // C++:  void cv::dnn::Net::setInputShape(String inputName, MatShape shape)
        //

        /**
         * Specify shape of network input.
         * param inputName automatically generated
         * param shape automatically generated
         */
        public void setInputShape(string inputName, MatOfInt shape)
        {
            ThrowIfDisposed();
            if (shape != null)
            {
                shape.ThrowIfDisposed();
            }
            Mat shape_mat = shape;

            dnn_Net_setInputShape_10(nativeObj, inputName, shape_mat.nativeObj);
        }
Esempio n. 15
0
        //
        // C++:  void cv::Subdiv2D::getLeadingEdgeList(vector_int& leadingEdgeList)
        //

        /**
         * Returns a list of the leading edge ID connected to each triangle.
         *
         *     param leadingEdgeList Output vector.
         *
         *     The function gives one edge ID for each triangle.
         */
        public void getLeadingEdgeList(MatOfInt leadingEdgeList)
        {
            ThrowIfDisposed();
            if (leadingEdgeList != null)
            {
                leadingEdgeList.ThrowIfDisposed();
            }
            Mat leadingEdgeList_mat = leadingEdgeList;

            imgproc_Subdiv2D_getLeadingEdgeList_10(nativeObj, leadingEdgeList_mat.nativeObj);
        }
Esempio n. 16
0
        //
        // C++:  int64 cv::dnn::Net::getFLOPS(int layerId, MatShape netInputShape)
        //

        public long getFLOPS(int layerId, MatOfInt netInputShape)
        {
            ThrowIfDisposed();
            if (netInputShape != null)
            {
                netInputShape.ThrowIfDisposed();
            }
            Mat netInputShape_mat = netInputShape;

            return(dnn_Net_getFLOPS_11(nativeObj, layerId, netInputShape_mat.nativeObj));
        }
Esempio n. 17
0
        //
        // C++:  bool cv::imwrite(String filename, Mat img, vector_int _params = std::vector<int>())
        //

        /**
         * Saves an image to a specified file.
         *
         * The function imwrite saves the image to the specified file. The image format is chosen based on the
         * filename extension (see cv::imread for the list of extensions). In general, only 8-bit
         * single-channel or 3-channel (with 'BGR' channel order) images
         * can be saved using this function, with these exceptions:
         *
         * <ul>
         *   <li>
         *  16-bit unsigned (CV_16U) images can be saved in the case of PNG, JPEG 2000, and TIFF formats
         *   </li>
         *   <li>
         *  32-bit float (CV_32F) images can be saved in PFM, TIFF, OpenEXR, and Radiance HDR formats;
         *   3-channel (CV_32FC3) TIFF images will be saved using the LogLuv high dynamic range encoding
         *   (4 bytes per pixel)
         *   </li>
         *   <li>
         *  PNG images with an alpha channel can be saved using this function. To do this, create
         * 8-bit (or 16-bit) 4-channel image BGRA, where the alpha channel goes last. Fully transparent pixels
         * should have alpha set to 0, fully opaque pixels should have alpha set to 255/65535 (see the code sample below).
         *   </li>
         *   <li>
         *  Multiple images (vector of Mat) can be saved in TIFF format (see the code sample below).
         *   </li>
         * </ul>
         *
         * If the format, depth or channel order is different, use
         * Mat::convertTo and cv::cvtColor to convert it before saving. Or, use the universal FileStorage I/O
         * functions to save the image to XML or YAML format.
         *
         * The sample below shows how to create a BGRA image, how to set custom compression parameters and save it to a PNG file.
         * It also demonstrates how to save multiple images in a TIFF file:
         * INCLUDE: snippets/imgcodecs_imwrite.cpp
         * param filename Name of the file.
         * param img (Mat or vector of Mat) Image or Images to be saved.
         * param _params automatically generated
         * return automatically generated
         */
        public static bool imwrite(string filename, Mat img, MatOfInt _params)
        {
            if (img != null)
            {
                img.ThrowIfDisposed();
            }
            if (_params != null)
            {
                _params.ThrowIfDisposed();
            }
            Mat _params_mat = _params;

            return(imgcodecs_Imgcodecs_imwrite_10(filename, img.nativeObj, _params_mat.nativeObj));
        }
Esempio n. 18
0
        //
        // C++: static Ptr_FREAK cv::xfeatures2d::FREAK::create(bool orientationNormalized = true, bool scaleNormalized = true, float patternScale = 22.0f, int nOctaves = 4, vector_int selectedPairs = std::vector<int>())
        //

        //javadoc: FREAK::create(orientationNormalized, scaleNormalized, patternScale, nOctaves, selectedPairs)
        public static FREAK create(bool orientationNormalized, bool scaleNormalized, float patternScale, int nOctaves, MatOfInt selectedPairs)
        {
            if (selectedPairs != null)
            {
                selectedPairs.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat   selectedPairs_mat = selectedPairs;
            FREAK retVal            = FREAK.__fromPtr__(xfeatures2d_FREAK_create_10(orientationNormalized, scaleNormalized, patternScale, nOctaves, selectedPairs_mat.nativeObj));

            return(retVal);
#else
            return(null);
#endif
        }
Esempio n. 19
0
        /**
         * The BRISK constructor for a custom pattern, detection threshold and octaves
         *
         *     param thresh AGAST detection threshold score.
         *     param octaves detection octaves. Use 0 to do single scale.
         *     param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
         *     keypoint scale 1).
         *     param numberList defines the number of sampling points on the sampling circle. Must be the same
         *     size as radiusList..
         *     param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
         *     scale 1).
         *     keypoint scale 1).
         * return automatically generated
         */
        public static BRISK create(int thresh, int octaves, MatOfFloat radiusList, MatOfInt numberList, float dMax)
        {
            if (radiusList != null)
            {
                radiusList.ThrowIfDisposed();
            }
            if (numberList != null)
            {
                numberList.ThrowIfDisposed();
            }
            Mat radiusList_mat = radiusList;
            Mat numberList_mat = numberList;

            return(BRISK.__fromPtr__(features2d_BRISK_create_12(thresh, octaves, radiusList_mat.nativeObj, numberList_mat.nativeObj, dMax)));
        }
Esempio n. 20
0
        /**
         * The BRISK constructor for a custom pattern
         *
         *     param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
         *     keypoint scale 1).
         *     param numberList defines the number of sampling points on the sampling circle. Must be the same
         *     size as radiusList..
         *     scale 1).
         *     keypoint scale 1).
         * return automatically generated
         */
        public static BRISK create(MatOfFloat radiusList, MatOfInt numberList)
        {
            if (radiusList != null)
            {
                radiusList.ThrowIfDisposed();
            }
            if (numberList != null)
            {
                numberList.ThrowIfDisposed();
            }
            Mat radiusList_mat = radiusList;
            Mat numberList_mat = numberList;

            return(BRISK.__fromPtr__(features2d_BRISK_create_111(radiusList_mat.nativeObj, numberList_mat.nativeObj)));
        }
Esempio n. 21
0
        public static void groupRectangles(MatOfRect rectList, MatOfInt weights, int groupThreshold)
        {
            if (rectList != null)
            {
                rectList.ThrowIfDisposed();
            }
            if (weights != null)
            {
                weights.ThrowIfDisposed();
            }
            Mat rectList_mat = rectList;
            Mat weights_mat  = weights;

            objdetect_Objdetect_groupRectangles_11(rectList_mat.nativeObj, weights_mat.nativeObj, groupThreshold);
        }
Esempio n. 22
0
        //
        // C++: static Ptr_PCTSignatures cv::xfeatures2d::PCTSignatures::create(vector_Point2f initSamplingPoints, vector_int initClusterSeedIndexes)
        //

        /**
         * Creates PCTSignatures algorithm using pre-generated sampling points
         * and clusterization seeds indexes.
         * param initSamplingPoints Sampling points used in image sampling.
         * param initClusterSeedIndexes Indexes of initial clusterization seeds.
         * Its size must be lower or equal to initSamplingPoints.size().
         * return Created algorithm.
         */
        public static PCTSignatures create(MatOfPoint2f initSamplingPoints, MatOfInt initClusterSeedIndexes)
        {
            if (initSamplingPoints != null)
            {
                initSamplingPoints.ThrowIfDisposed();
            }
            if (initClusterSeedIndexes != null)
            {
                initClusterSeedIndexes.ThrowIfDisposed();
            }
            Mat initSamplingPoints_mat     = initSamplingPoints;
            Mat initClusterSeedIndexes_mat = initClusterSeedIndexes;

            return(PCTSignatures.__fromPtr__(xfeatures2d_PCTSignatures_create_15(initSamplingPoints_mat.nativeObj, initClusterSeedIndexes_mat.nativeObj)));
        }
Esempio n. 23
0
        //
        // C++:  void cv::xfeatures2d::PCTSignatures::setInitSeedIndexes(vector_int initSeedIndexes)
        //

        //javadoc: PCTSignatures::setInitSeedIndexes(initSeedIndexes)
        public void setInitSeedIndexes(MatOfInt initSeedIndexes)
        {
            ThrowIfDisposed();
            if (initSeedIndexes != null)
            {
                initSeedIndexes.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat initSeedIndexes_mat = initSeedIndexes;
            xfeatures2d_PCTSignatures_setInitSeedIndexes_10(nativeObj, initSeedIndexes_mat.nativeObj);

            return;
#else
            return;
#endif
        }
Esempio n. 24
0
        //
        // C++:  void cv::Subdiv2D::getLeadingEdgeList(vector_int& leadingEdgeList)
        //

        //javadoc: Subdiv2D::getLeadingEdgeList(leadingEdgeList)
        public void getLeadingEdgeList(MatOfInt leadingEdgeList)
        {
            ThrowIfDisposed();
            if (leadingEdgeList != null)
            {
                leadingEdgeList.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat leadingEdgeList_mat = leadingEdgeList;
            imgproc_Subdiv2D_getLeadingEdgeList_10(nativeObj, leadingEdgeList_mat.nativeObj);

            return;
#else
            return;
#endif
        }
Esempio n. 25
0
        //
        // C++:  int64 cv::dnn::Net::getFLOPS(int layerId, MatShape netInputShape)
        //

        //javadoc: Net::getFLOPS(layerId, netInputShape)
        public long getFLOPS(int layerId, MatOfInt netInputShape)
        {
            ThrowIfDisposed();
            if (netInputShape != null)
            {
                netInputShape.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat  netInputShape_mat = netInputShape;
            long retVal            = dnn_Net_getFLOPS_11(nativeObj, layerId, netInputShape_mat.nativeObj);

            return(retVal);
#else
            return(-1);
#endif
        }
Esempio n. 26
0
        //
        // C++:  bool cv::imwrite(String filename, Mat img, vector_int _params = std::vector<int>())
        //

        //javadoc: imwrite(filename, img, _params)
        public static bool imwrite(string filename, Mat img, MatOfInt _params)
        {
            if (img != null)
            {
                img.ThrowIfDisposed();
            }
            if (_params != null)
            {
                _params.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat  _params_mat = _params;
            bool retVal      = imgcodecs_Imgcodecs_imwrite_10(filename, img.nativeObj, _params_mat.nativeObj);

            return(retVal);
#else
            return(false);
#endif
        }
Esempio n. 27
0
        //
        // C++:  void cv::Subdiv2D::getVoronoiFacetList(vector_int idx, vector_vector_Point2f& facetList, vector_Point2f& facetCenters)
        //

        /**
         * Returns a list of all Voronoi facets.
         *
         *     param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector.
         *     param facetList Output vector of the Voronoi facets.
         *     param facetCenters Output vector of the Voronoi facets center points.
         */
        public void getVoronoiFacetList(MatOfInt idx, List <MatOfPoint2f> facetList, MatOfPoint2f facetCenters)
        {
            ThrowIfDisposed();
            if (idx != null)
            {
                idx.ThrowIfDisposed();
            }
            if (facetCenters != null)
            {
                facetCenters.ThrowIfDisposed();
            }
            Mat idx_mat          = idx;
            Mat facetList_mat    = new Mat();
            Mat facetCenters_mat = facetCenters;

            imgproc_Subdiv2D_getVoronoiFacetList_10(nativeObj, idx_mat.nativeObj, facetList_mat.nativeObj, facetCenters_mat.nativeObj);
            Converters.Mat_to_vector_vector_Point2f(facetList_mat, facetList);
            facetList_mat.release();
        }
Esempio n. 28
0
        //
        // C++:  bool cv::imencode(String ext, Mat img, vector_uchar& buf, vector_int _params = std::vector<int>())
        //

        /**
         * Encodes an image into a memory buffer.
         *
         * The function imencode compresses the image and stores it in the memory buffer that is resized to fit the
         * result. See cv::imwrite for the list of supported formats and flags description.
         *
         * param ext File extension that defines the output format.
         * param img Image to be written.
         * param buf Output buffer resized to fit the compressed image.
         * param _params automatically generated
         * return automatically generated
         */
        public static bool imencode(string ext, Mat img, MatOfByte buf, MatOfInt _params)
        {
            if (img != null)
            {
                img.ThrowIfDisposed();
            }
            if (buf != null)
            {
                buf.ThrowIfDisposed();
            }
            if (_params != null)
            {
                _params.ThrowIfDisposed();
            }
            Mat buf_mat     = buf;
            Mat _params_mat = _params;

            return(imgcodecs_Imgcodecs_imencode_10(ext, img.nativeObj, buf_mat.nativeObj, _params_mat.nativeObj));
        }
Esempio n. 29
0
        //javadoc: BRISK::create(radiusList, numberList)
        public static BRISK create(MatOfFloat radiusList, MatOfInt numberList)
        {
            if (radiusList != null)
            {
                radiusList.ThrowIfDisposed();
            }
            if (numberList != null)
            {
                numberList.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat   radiusList_mat = radiusList;
            Mat   numberList_mat = numberList;
            BRISK retVal         = BRISK.__fromPtr__(features2d_BRISK_create_111(radiusList_mat.nativeObj, numberList_mat.nativeObj));

            return(retVal);
#else
            return(null);
#endif
        }
Esempio n. 30
0
        //
        // C++: static Ptr_PCTSignatures cv::xfeatures2d::PCTSignatures::create(vector_Point2f initSamplingPoints, vector_int initClusterSeedIndexes)
        //

        //javadoc: PCTSignatures::create(initSamplingPoints, initClusterSeedIndexes)
        public static PCTSignatures create(MatOfPoint2f initSamplingPoints, MatOfInt initClusterSeedIndexes)
        {
            if (initSamplingPoints != null)
            {
                initSamplingPoints.ThrowIfDisposed();
            }
            if (initClusterSeedIndexes != null)
            {
                initClusterSeedIndexes.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat           initSamplingPoints_mat     = initSamplingPoints;
            Mat           initClusterSeedIndexes_mat = initClusterSeedIndexes;
            PCTSignatures retVal = PCTSignatures.__fromPtr__(xfeatures2d_PCTSignatures_create_15(initSamplingPoints_mat.nativeObj, initClusterSeedIndexes_mat.nativeObj));

            return(retVal);
#else
            return(null);
#endif
        }