Esempio n. 1
0
        //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights)
        public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights)
        {
            ThrowIfDisposed();
            if (image != null)
            {
                image.ThrowIfDisposed();
            }
            if (objects != null)
            {
                objects.ThrowIfDisposed();
            }
            if (rejectLevels != null)
            {
                rejectLevels.ThrowIfDisposed();
            }
            if (levelWeights != null)
            {
                levelWeights.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat objects_mat      = objects;
            Mat rejectLevels_mat = rejectLevels;
            Mat levelWeights_mat = levelWeights;
            objdetect_CascadeClassifier_detectMultiScale3_16(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj);

            return;
#else
            return;
#endif
        }
Esempio n. 2
0
        //javadoc: CascadeClassifier::detectMultiScale3(image, objects, rejectLevels, levelWeights, scaleFactor, minNeighbors, flags, minSize)
        public void detectMultiScale3(Mat image, MatOfRect objects, MatOfInt rejectLevels, MatOfDouble levelWeights, double scaleFactor, int minNeighbors, int flags, Size minSize)
        {
            ThrowIfDisposed();
            if (image != null)
            {
                image.ThrowIfDisposed();
            }
            if (objects != null)
            {
                objects.ThrowIfDisposed();
            }
            if (rejectLevels != null)
            {
                rejectLevels.ThrowIfDisposed();
            }
            if (levelWeights != null)
            {
                levelWeights.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat objects_mat      = objects;
            Mat rejectLevels_mat = rejectLevels;
            Mat levelWeights_mat = levelWeights;
            objdetect_CascadeClassifier_detectMultiScale3_12(nativeObj, image.nativeObj, objects_mat.nativeObj, rejectLevels_mat.nativeObj, levelWeights_mat.nativeObj, scaleFactor, minNeighbors, flags, minSize.width, minSize.height);

            return;
#else
            return;
#endif
        }
Esempio n. 3
0
        //
        // C++:  int64 cv::dnn::Net::getPerfProfile(vector_double& timings)
        //

        /**
         * Returns overall time for inference and timings (in ticks) for layers.
         * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
         * in this case zero ticks count will be return for that skipped layers.
         * param timings vector for tick timings for all layers.
         * return overall ticks for model inference.
         */
        public long getPerfProfile(MatOfDouble timings)
        {
            ThrowIfDisposed();
            if (timings != null)
            {
                timings.ThrowIfDisposed();
            }
            Mat timings_mat = timings;

            return(dnn_Net_getPerfProfile_10(nativeObj, timings_mat.nativeObj));
        }
Esempio n. 4
0
        //
        // C++:  int64 cv::dnn::Net::getPerfProfile(vector_double& timings)
        //

        //javadoc: Net::getPerfProfile(timings)
        public long getPerfProfile(MatOfDouble timings)
        {
            ThrowIfDisposed();
            if (timings != null)
            {
                timings.ThrowIfDisposed();
            }
#if ((UNITY_ANDROID || UNITY_IOS || UNITY_WEBGL) && !UNITY_EDITOR) || UNITY_5 || UNITY_5_3_OR_NEWER
            Mat  timings_mat = timings;
            long retVal      = dnn_Net_getPerfProfile_10(nativeObj, timings_mat.nativeObj);

            return(retVal);
#else
            return(-1);
#endif
        }