static void Main(string[] args) { string net = args[0]; string pn1 = args[1]; string pn2 = args[2]; int equal = 0; int unequal = 0; Options.InitializeNNAnalysis(); NeuralNet nn = MNIST.GetNN(net); Console.WriteLine("Initialized network"); Bitmap x1 = new Bitmap(pn1); Bitmap x2 = new Bitmap(pn2); int[] dat1 = UDraw.FromBitmap(x1, MNIST.InputCoordinates.RowCount, MNIST.InputCoordinates.ColumnCount, false); int[] dat2 = UDraw.FromBitmap(x2, MNIST.InputCoordinates.RowCount, MNIST.InputCoordinates.ColumnCount, false); int lab1 = NNAnalysis.Utils.ULabel.Label(nn, UArray.ToDoubleArray(dat1), true); int lab2 = NNAnalysis.Utils.ULabel.Label(nn, UArray.ToDoubleArray(dat2), true); if (lab1 == lab2) { equal++; } else { unequal++; } Console.Write("Label for {0} is: {1}-{2}", pn1, lab1, lab2); Console.WriteLine(", equals = {0}", (lab1 == lab2)); //Console.WriteLine("Label for {0} is: {1}", pn2, lab2); }
static void Main(string[] args) { string MNISTFile = null; string MNISTData = null; string MNISTLabels = null; var p = new OptionSet(); bool just_accuracy = false; bool just_loss = false; p.Add("nnet=", "MNIST neural network file name", x => MNISTFile = x); p.Add("datafile=", "MNIST data file name", x => MNISTData = x); p.Add("labelfile=", "MNIST label file name", x => MNISTLabels = x); p.Add <bool>("optimization=", "Do optimization (Default: true)", (x => RobustnessOptions.DoOptimization = x)); p.Add <double>("bound=", "Linfinity-ball to search", (x => RobustnessOptions.Epsilon = x)); p.Add <double>("sub=", "Subsample from 'live' constraints (0.0-1.0)", (x => RobustnessOptions.LiveConstraintSamplingRatio = x)); p.Add <string>("registry=", "Unique name to store output examples and statistics", (x => RobustnessOptions.Registry = x)); p.Add <bool>("cegar=", "Do CEGAR (default: true)", (x => RobustnessOptions.CEGAR = x)); p.Add <string>("only-accuracy", "Only evaluate accuracy", (x => just_accuracy = (x != null))); p.Add <string>("only-loss", "Only evaluate loss", (x => just_loss = (x != null))); p.Add <string>("no-quant-safety", "Quantization integrality safety off", (x => RobustnessOptions.QuantizationSafety = (x == null))); p.Add <string>("max-conf", "Use max-conf objective", (x => { if (x != null) { RobustnessOptions.ObjectiveKind = LPSObjectiveKind.MaxConf; } })); p.Add <double>("winner-diff=", "Winning label should be that much different than second best", (x => RobustnessOptions.LabelConfidenceDiff = x)); p.Add <string>("log-png", "Log png files", (x => RobustnessOptions.SavePNGCounterexamples = (x != null))); bool only_misclass = false; p.Add("only-filter-misclass", "Only keep the misclassifications", (x => only_misclass = (x != null))); Cmd.RunOptionSet(p, args); if (MNISTFile == null || MNISTData == null || MNISTLabels == null) { Console.WriteLine("Invalid arguments, use --help"); Environment.Exit(1); } RobustnessOptions.Dump(); Options.InitializeNNAnalysis(); NeuralNet nn = MNIST.GetNN(MNISTFile); ImageDataset data = MNIST.ReadData(MNISTLabels, MNISTData, MNIST.ALL_IMAGES, 0); if (just_accuracy) { NNAccuracy.GetAccuracy(nn, data.Dataset); return; } if (just_loss) { NNAccuracy.GetLoss(nn, data.Dataset); return; } if (only_misclass) { string filtered = RobustnessOptions.Registry + "-misclass"; Console.WriteLine("Orig {0} data", data.Dataset.Count()); var ds = NNAccuracy.KeepMisclass(nn, data.Dataset); Console.WriteLine("Kept {0} data", ds.Count()); ImageDataset ret = new ImageDataset(ds, MNIST.InputCoordinates.ChannelCount, MNIST.InputCoordinates.RowCount, MNIST.InputCoordinates.ColumnCount, true); MNIST.WriteData(filtered + "-labels", filtered + "-images", ret); return; } // NB: No snapshotting for MNIST since it never crashes ... ImageDataset synth = Robustness.SynthesizeCounterexamplesAndStore(nn, data, x => { return; }); MNIST.WriteData(RobustnessOptions.Registry + "-synth-labels", RobustnessOptions.Registry + "-synth-images", synth); }