private static void TestLogisticRegression(FeatureVector training, FeatureVector test) { LogisticRegression lr = new LogisticRegression(0.1, 3000); LogisticRegressionModel lrModel = (LogisticRegressionModel)lr.Fit(training); FeatureVector predictions = lrModel.transform(test); PrintPredictionsAndEvaluate(predictions); }
// ******************************************************************** #region Constructor public ViewModel() { Measurements = new ObservableCollection <Measurement>(); LineData = new LineModel(); LogisticRegression = new LogisticRegressionModel(); CreateCommands(); Alpha = 0.05; }
public void Logistic_Regression_Test_Prediction() { Matrix m = new[, ] { { 8, 1, 6 }, { 3, 5, 7 }, { 4, 9, 2 } }; var model = new LogisticRegressionModel() { LogisticFunction = new Math.Functions.Logistic(), Theta = new Vector(new double[] { 1, 2, 1, -9 }) }; var p = model.Predict(new Vector(new double[] { 8, 1, 6 })); Assert.AreEqual(1d, p); }
public LogisticRegressionPresenter(DataSetManagerPresenter dataSetPresenter) { this.dataSetPresenter = dataSetPresenter; this.model = new LogisticRegressionModel(); }
private void buttonForDataSplitNext_Click(object sender, EventArgs e) { trainingSetPercentage = (double)numericUpDownForTrainingSetPercent.Value / 100.0; numFolds = (int)numericUpDownForNumFolds.Value; double[] smaOut = null; double[] wmaOut = null; double[] emaOut = null; double[] macdOut = null; double[] stochasticsOut = null; double[] williamsROut = null; double[] rsiOut = null; double[] closesOut = null; var data = IndicatorService.GetData(code, targetDate, new string[] { "Tarih", "Kapanis" }, numberOfData + 1); if (isSMAChecked) { smaOut = IndicatorDataPreprocessor.GetSMAOut(MovingAverage.Simple(code, targetDate, smaPeriod, numberOfData)); } if (isWMAChecked) { wmaOut = IndicatorDataPreprocessor.GetWMAOut(MovingAverage.Weighted(code, targetDate, wmaPeriod, numberOfData)); } if (isEMAChecked) { emaOut = IndicatorDataPreprocessor.GetEMAOut(MovingAverage.Exponential(code, targetDate, emaPeriod, numberOfData)); } if (isMACDChecked) { macdOut = IndicatorDataPreprocessor.GetMACDOut(new MovingAverageConvergenceDivergence(code, targetDate, firstPeriod, secondPeriod, triggerPeriod, numberOfData)); } if (isStochasticsChecked) { stochasticsOut = IndicatorDataPreprocessor.GetStochasticsOut(new Stochastics(code, targetDate, fastKPeriod, fastDPeriod, slowDPeriod, numberOfData)); } if (isWilliamsRChecked) { williamsROut = IndicatorDataPreprocessor.GetWilliamsROut(WilliamsR.Wsr(code, targetDate, williamsRPeriod, numberOfData)); } if (isRSIChecked) { rsiOut = IndicatorDataPreprocessor.GetRSIOut(RelativeStrengthIndex.Rsi(code, targetDate, rsiPeriod, numberOfData)); } closesOut = IndicatorDataPreprocessor.GetClosesOut(numberOfData, data); int minRowCount = 1000000; if (smaOut != null) { minRowCount = smaOut.Length; } if (wmaOut != null) { minRowCount = minRowCount < wmaOut.Length ? minRowCount : wmaOut.Length; } if (emaOut != null) { minRowCount = minRowCount < emaOut.Length ? minRowCount : emaOut.Length; } if (macdOut != null) { minRowCount = minRowCount < macdOut.Length ? minRowCount : macdOut.Length; } if (rsiOut != null) { minRowCount = minRowCount < rsiOut.Length ? minRowCount : rsiOut.Length; } if (williamsROut != null) { minRowCount = minRowCount < williamsROut.Length ? minRowCount : williamsROut.Length; } if (stochasticsOut != null) { minRowCount = minRowCount < stochasticsOut.Length ? minRowCount : stochasticsOut.Length; } if (closesOut != null) { minRowCount = minRowCount < closesOut.Length ? minRowCount : closesOut.Length; } var fv = new FeatureVector(); if (isSMAChecked) { fv.AddColumn("SMA", smaOut.Select(p => (object)p.ToString(CultureInfo.InvariantCulture)).Take(minRowCount).ToArray()); } if (isWMAChecked) { fv.AddColumn("WMA", wmaOut.Select(p => (object)p.ToString(CultureInfo.InvariantCulture)).Take(minRowCount).ToArray()); } if (isEMAChecked) { fv.AddColumn("EMA", emaOut.Select(p => (object)p.ToString(CultureInfo.InvariantCulture)).Take(minRowCount).ToArray()); } if (isMACDChecked) { fv.AddColumn("MACD", macdOut.Select(p => (object)p.ToString(CultureInfo.InvariantCulture)).Take(minRowCount).ToArray()); } if (isRSIChecked) { fv.AddColumn("RSI", rsiOut.Select(p => (object)p.ToString(CultureInfo.InvariantCulture)).Take(minRowCount).ToArray()); } if (isWilliamsRChecked) { fv.AddColumn("WilliamsR", williamsROut.Select(p => (object)p.ToString(CultureInfo.InvariantCulture)).Take(minRowCount).ToArray()); } if (isStochasticsChecked) { fv.AddColumn("Stochastics", stochasticsOut.Select(p => (object)p.ToString(CultureInfo.InvariantCulture)).Take(minRowCount).ToArray()); } fv.AddColumn("label", closesOut.Select(p => (object)string.Format("{0:0.0}", p).ToString(CultureInfo.InvariantCulture)).Take(minRowCount).ToArray()); var training = new FeatureVector(); var test = new FeatureVector(); int count = fv.Values[0].Length; for (int i = 0; i < fv.ColumnName.Count; i++) { training.AddColumn(fv.ColumnName[i], fv.Values[i].Take((int)(count * trainingSetPercentage)).ToArray()); } for (int i = 0; i < fv.ColumnName.Count; i++) { test.AddColumn(fv.ColumnName[i], fv.Values[i].Skip((int)(count * trainingSetPercentage)).Take(count).ToArray()); // Take(count) means take the rest of all elements, number of the rest of the elements is smaller than count. } if (numFolds > 0) { BinaryClassificationEvaluator bce1 = new BinaryClassificationEvaluator(); LinearRegression linearRegression = new LinearRegression(); CrossValidator cvLinReg = new CrossValidator(linearRegression, bce1, numFolds); CrossValidatorModel cvLinRegModel = (CrossValidatorModel)cvLinReg.Fit(training); FeatureVector linRegPredictions = cvLinRegModel.transform(test); bce1.evaluate(linRegPredictions); linRegAcc = bce1.Accuracy; BinaryClassificationEvaluator bce2 = new BinaryClassificationEvaluator(); LogisticRegression logisticRegression = new LogisticRegression(); CrossValidator cvLogReg = new CrossValidator(logisticRegression, bce2, numFolds); CrossValidatorModel cvLogRegModel = (CrossValidatorModel)cvLogReg.Fit(training); FeatureVector logRegPredictions = cvLogRegModel.transform(test); bce2.evaluate(logRegPredictions); logRegAcc = bce2.Accuracy; BinaryClassificationEvaluator bce3 = new BinaryClassificationEvaluator(); NaiveBayes naiveBayes = new NaiveBayes(); CrossValidator cvNaiBay = new CrossValidator(naiveBayes, bce3, numFolds); CrossValidatorModel cvNaiBayModel = (CrossValidatorModel)cvNaiBay.Fit(training); FeatureVector naiBayPredictions = cvNaiBayModel.transform(test); bce3.evaluate(naiBayPredictions); naiBayAcc = bce3.Accuracy; } else { BinaryClassificationEvaluator bce1 = new BinaryClassificationEvaluator(); LinearRegression linearRegression = new LinearRegression(); LinearRegressionModel linearRegressionModel = (LinearRegressionModel)linearRegression.Fit(training); FeatureVector linRegPredictions = linearRegressionModel.transform(test); bce1.evaluate(linRegPredictions); linRegAcc = bce1.Accuracy; BinaryClassificationEvaluator bce2 = new BinaryClassificationEvaluator(); LogisticRegression logicticRegression = new LogisticRegression(); LogisticRegressionModel logisticRegressionModel = (LogisticRegressionModel)logicticRegression.Fit(training); FeatureVector logRegPredictions = logisticRegressionModel.transform(test); bce2.evaluate(logRegPredictions); logRegAcc = bce2.Accuracy; BinaryClassificationEvaluator bce3 = new BinaryClassificationEvaluator(); NaiveBayes naiveBayes = new NaiveBayes(); NaiveBayesModel naiveBayesModel = (NaiveBayesModel)naiveBayes.Fit(training); FeatureVector naiBayPredictions = naiveBayesModel.transform(test); bce3.evaluate(naiBayPredictions); naiBayAcc = bce3.Accuracy; } labelForLinRegAcc.Text = linRegAcc.ToString(); labelForLogRegAcc.Text = logRegAcc.ToString(); labelForNaiBayAcc.Text = naiBayAcc.ToString(); panelForResults.BringToFront(); }