Esempio n. 1
0
        public void LinkedHashSet_Generic_CopyTo_NegativeCount_ThrowsArgumentOutOfRangeException(int count)
        {
            LinkedHashSet <T> set = (LinkedHashSet <T>)GenericISetFactory(count);

            T[] arr = new T[count];
            Assert.Throws <ArgumentOutOfRangeException>(() => set.CopyTo(arr, 0, -1));
            Assert.Throws <ArgumentOutOfRangeException>(() => set.CopyTo(arr, 0, int.MinValue));
        }
Esempio n. 2
0
        public void LinkedHashSet_Generic_CopyTo_NoIndexDefaultsToZero(int count)
        {
            LinkedHashSet <T> set = (LinkedHashSet <T>)GenericISetFactory(count);

            T[] arr1 = new T[count];
            T[] arr2 = new T[count];
            set.CopyTo(arr1);
            set.CopyTo(arr2, 0);
            Assert.True(arr1.SequenceEqual(arr2));
        }
Esempio n. 3
0
        public void LinkedHashSet_Generic_RemoveWhere_NewObject() // Regression Dev10_624201
        {
            object[] array             = new object[2];
            object   obj               = new object();
            LinkedHashSet <object> set = new LinkedHashSet <object>();

            set.Add(obj);
            set.Remove(obj);
            foreach (object o in set)
            {
            }
            set.CopyTo(array, 0, 2);
            set.RemoveWhere((element) => { return(false); });
        }
Esempio n. 4
0
        public CategoricalDistribution jointDistribution(
            params IProposition[] propositions)
        {
            ProbabilityTable d        = null;
            IProposition     conjProp = ProbUtil
                                        .constructConjunction(propositions);
            LinkedHashSet <RandomVariable> vars = new LinkedHashSet <RandomVariable>(
                conjProp.getUnboundScope());

            if (vars.Count > 0)
            {
                RandomVariable[] distVars = new RandomVariable[vars.Count];
                vars.CopyTo(distVars);

                ProbabilityTable ud     = new ProbabilityTable(distVars);
                Object[]         values = new Object[vars.Count];

                //ProbabilityTable.Iterator di = new ProbabilityTable.Iterator() {

                //    public void iterate(Map<RandomVariable, Object> possibleWorld,
                //            double probability) {
                //        if (conjProp.holds(possibleWorld)) {
                //            int i = 0;
                //            for (RandomVariable rv : vars) {
                //                values[i] = possibleWorld.get(rv);
                //                i++;
                //            }
                //            int dIdx = ud.getIndex(values);
                //            ud.setValue(dIdx, ud.getValues()[dIdx] + probability);
                //        }
                //    }
                //};

                //distribution.iterateOverTable(di);
                // TODO:
                d = ud;
            }
            else
            {
                // No Unbound Variables, therefore just return
                // the singular probability related to the proposition.
                d = new ProbabilityTable();
                d.setValue(0, prior(propositions));
            }
            return(d);
        }
        public CategoricalDistribution jointDistribution(
            params IProposition[] propositions)
        {
            ProbabilityTable d = null;
            IProposition conjProp = ProbUtil
                .constructConjunction(propositions);
            LinkedHashSet<RandomVariable> vars = new LinkedHashSet<RandomVariable>(
                conjProp.getUnboundScope());

            if (vars.Count > 0)
            {
                RandomVariable[] distVars = new RandomVariable[vars.Count];
                vars.CopyTo(distVars);

                ProbabilityTable ud = new ProbabilityTable(distVars);
                Object[] values = new Object[vars.Count];

                //ProbabilityTable.Iterator di = new ProbabilityTable.Iterator() {

                //    public void iterate(Map<RandomVariable, Object> possibleWorld,
                //            double probability) {
                //        if (conjProp.holds(possibleWorld)) {
                //            int i = 0;
                //            for (RandomVariable rv : vars) {
                //                values[i] = possibleWorld.get(rv);
                //                i++;
                //            }
                //            int dIdx = ud.getIndex(values);
                //            ud.setValue(dIdx, ud.getValues()[dIdx] + probability);
                //        }
                //    }
                //};

                //distribution.iterateOverTable(di);
                // TODO:
                d = ud;
            }
            else
            {
                // No Unbound Variables, therefore just return
                // the singular probability related to the proposition.
                d = new ProbabilityTable();
                d.setValue(0, prior(propositions));
            }
            return d;
        }