/// <inheritdoc/> Tensor IOps.Reshape(Tensor X, TensorShape shape) { m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(m_Ops.Reshape(X, shape)); }
/// <inheritdoc/> Tensor IOps.Flatten(Tensor X) { m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(m_Ops.Flatten(X)); }
/// <inheritdoc/> Tensor IOps.SpaceToDepth(Tensor X, int[] scale) { var O = m_Ops.SpaceToDepth(X, scale); m_Mem += (long)X.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.DepthToSpace(Tensor X, int[] scale, Layer.DepthToSpaceMode mode) { var O = m_Ops.DepthToSpace(X, scale, mode); m_Mem += (long)X.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Dense3(Tensor X, Tensor W, Tensor B) { var O = m_Ops.Dense3(X, W, B); m_Alu += (long)X.height * (long)X.width * (long)W.width * 2L * (long)X.batch * (long)X.channels; m_Mem += (long)X.length + (long)W.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.NonMaxSuppression(Tensor[] tensors, int maxOutputBoxesPerClass, float iouThreshold, float scoreThreshold, int centerPointBox) { var O = m_Ops.NonMaxSuppression(tensors, maxOutputBoxesPerClass, iouThreshold, scoreThreshold, centerPointBox); m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Expand(Tensor X, TensorShape shape) { var O = m_Ops.Expand(X, shape); m_Alu += 0; m_Mem += (long)X.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.GlobalAvgVariancePool2D(Tensor X) { var O = m_Ops.GlobalAvgVariancePool2D(X); m_Alu += (long)X.length * 2L + (long)O.length; m_Mem += (long)X.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Upsample3D(Tensor X, int[] scale, bool trilinear) { var O = m_Ops.Upsample3D(X, scale, trilinear); m_Alu += (long)O.length * (trilinear ? 18 : 1); m_Mem += (long)X.length * (trilinear ? 8 : 1) + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Resample2D(Tensor X, int[] size, bool bilinear) { var O = m_Ops.Resample2D(X, size, bilinear); m_Alu += (long)O.length * (bilinear ? 8 : 1); m_Mem += (long)X.length * (bilinear ? 4 : 1) + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.MatMul(Tensor X, bool xTranspose, Tensor Y, bool yTranspose) { var O = m_Ops.MatMul(X, xTranspose, Y, yTranspose); m_Alu += (long)X.flatHeight * (long)X.flatWidth * (long)Y.flatWidth * 2L; m_Mem += (long)X.length + (long)Y.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Border3D(Tensor X, int[] pad, float value) { var O = m_Ops.Border3D(X, pad, value); m_Alu += 0; m_Mem += (long)X.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.RoiAlign(Tensor X, Tensor rois, Tensor indices, int outputHeight, int outputWidth, int samplingRatio, float spatialScale) { var O = m_Ops.RoiAlign(X, rois, indices, outputHeight, outputWidth, samplingRatio, spatialScale); m_Alu += 4 * outputHeight * outputWidth * samplingRatio * samplingRatio; m_Mem += 4 * outputHeight * outputWidth * samplingRatio * samplingRatio; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Normalization(Tensor X, Tensor S, Tensor B, int pool, int axis, float epsilon, Layer.FusedActivation fusedActivation) { var O = m_Ops.Normalization(X, S, B, pool, axis, epsilon, fusedActivation); m_Alu += (long)X.length * 4L + (long)O.length * 2L; m_Mem += (long)X.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.MatMul(Tensor X, int rankX, Tensor Y, int rankY) { var O = m_Ops.MatMul(X, rankX, Y, rankY); m_Alu += (long)X.height * (long)X.width * (long)Y.width * 2L * (long)X.batch * (long)X.channels; m_Mem += (long)X.length + (long)Y.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Pad2DEdge(Tensor X, int[] pad) { var O = m_Ops.Pad2DEdge(X, pad); m_Alu += 0; m_Mem += (long)X.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Dense(Tensor X, Tensor W, Tensor B, Layer.FusedActivation fusedActivation) { var O = m_Ops.Dense(X, W, B, fusedActivation); m_Alu += (long)X.flatHeight * (long)X.flatWidth * (long)W.flatWidth * 2L; m_Mem += (long)X.length + (long)W.length + (long)B.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> public Tensor TopKValues(Tensor X, Tensor I, int axis) { var O = m_Ops.TopKValues(X, I, axis); // @TODO: not implemented m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.TopKIndices(Tensor X, int k, int axis, bool largest, bool sorted) { var O = m_Ops.TopKIndices(X, k, axis, largest, sorted); // @TODO: not implemented m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.OneHot(Tensor X, int depth, float onValue, float offValue) { var O = m_Ops.OneHot(X, depth, onValue, offValue); // @TODO: not implemented m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Multinomial(Tensor X, int count, int seed) { var O = m_Ops.Multinomial(X, count, seed); // @TODO: not implemented m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.RandomUniform(TensorShape s, float mean, float scale, int seed) { var O = m_Ops.RandomUniform(s, mean, scale, seed); // @TODO: not implemented m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(O); }
/// <inheritdoc/> public Tensor NonZero(Tensor X) { var O = m_Ops.NonZero(X); // @TODO: not implemented m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(O); }
/// <inheritdoc/> public Tensor[] LSTM(Tensor X, Tensor[] W, Tensor[] R, Tensor[] Wb, Tensor[] Rb, Tensor hidden, Tensor cell) { var O = m_Ops.LSTM(X, W, R, Wb, Rb, hidden, cell); // @TODO: not implemented m_Alu += 0; m_Mem += 0; RegisterLayerStats(); return(O); }
internal void ElementwiseBroadcast(Tensor[] tensors, Tensor X, long aluOperationsPerElement = 1L) { m_Alu += (long)X.length * aluOperationsPerElement; long mem = (long)X.length; foreach (var t in tensors) { mem += (long)t.length; } m_Mem += mem; }
/// <inheritdoc/> Tensor IOps.LRN(Tensor X, float alpha, float beta, float bias, int size) { var O = m_Ops.LRN(X, alpha, beta, bias, size); //A bit over conservative. Number of read/alu is lower than `size` when normalisation windows is too large for data at current index. long sizeL = size; m_Alu += (long)X.length * (5L + sizeL * 2L); m_Mem += (long)X.length * (sizeL + 2L); RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.DepthwiseConv2D(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, Layer.FusedActivation fusedActivation) { var O = m_Ops.DepthwiseConv2D(X, K, B, stride, pad, fusedActivation); long m = (long)O.batch * (long)O.width * (long)O.height; long n = (long)X.channels; long k = (long)K.kernelWidth * (long)K.kernelHeight; m_Alu += m * n * k * 2L; m_Mem += (long)X.length + (long)K.length + (long)B.length + (long)O.length; RegisterLayerStats(); return(O); }
/// <inheritdoc/> Tensor IOps.Conv2DTrans(Tensor X, Tensor K, Tensor B, int[] stride, int[] pad, int[] outputAdjustment, Layer.FusedActivation fusedActivation) { var O = m_Ops.Conv2DTrans(X, K, B, stride, pad, outputAdjustment, fusedActivation); long m = (long)O.batch * (long)O.width * (long)O.height; long n = (long)X.channels; long k = (long)(K.kernelWidth / stride[1]) * (long)(K.kernelHeight / stride[0]) * (long)K.channels; m_Alu += m * n * k * 2L; m_Mem += (long)X.length + (long)K.length + (long)B.length + (long)O.length; RegisterLayerStats(); return(O); }
internal void Reduce(Tensor X, Tensor O, long aluOperationsPerElement = 1L) { m_Alu += (long)X.length * aluOperationsPerElement; m_Mem += (long)X.length + (long)O.length; }
/// <summary> /// Create `StatsOps` /// </summary> /// <param name="ops">target ops</param> public StatsOps(IOps ops) { m_Ops = ops; m_Alu = new LayerStat(0L, 0L); m_Mem = new LayerStat(0L, 0L); }