public MCvPoint3D32f Kalman4Joints(float x, float y, float z, Kalman kalman, SyntheticData syntheticData) { //Kalman headPC1 Emgu.CV.Matrix <float> MatrixGet = new Emgu.CV.Matrix <float>(6, 1); MatrixGet[0, 0] = x; MatrixGet[1, 0] = y; MatrixGet[2, 0] = z; kalman = new Kalman(6, 3, 0); Emgu.CV.Matrix <float> state = MatrixGet; kalman.CorrectedState = state; kalman.TransitionMatrix = syntheticData.transitionMatrix; kalman.MeasurementNoiseCovariance = syntheticData.measurementNoise; kalman.ProcessNoiseCovariance = syntheticData.processNoise; kalman.ErrorCovariancePost = syntheticData.errorCovariancePost; kalman.MeasurementMatrix = syntheticData.measurementMatrix; Matrix <float> prediction = new Matrix <float>(3, 1); prediction = kalman.Predict(); MCvPoint3D32f predictPointheadPC1 = new MCvPoint3D32f(prediction[0, 0], prediction[1, 0], prediction[2, 0]); MCvPoint3D32f measurePointheadPC1 = new MCvPoint3D32f(syntheticData.GetMeasurement()[0, 0], syntheticData.GetMeasurement()[1, 0], syntheticData.GetMeasurement()[2, 0]); Matrix <float> estimated = kalman.Correct(syntheticData.GetMeasurement()); MCvPoint3D32f estimatedPoint = new MCvPoint3D32f(estimated[0, 0], estimated[1, 0], estimated[2, 0]); syntheticData.GoToNextState(); return(estimatedPoint); }
//Filter data and store values public void filterPoints(float[] pt) { //add tracking data as filter state mk.state[0, 0] = pt[0]; mk.state[1, 0] = pt[1]; if (start) { //if it is first run of the filter add orientation value directly mk.state[2, 0] = pt[2]; start = false; } else { //if it is not the first frame corect orientation to avoid high derivatives in rotation //there is a factor of 5 to make rotations a similar order of magnitude as translation mk.state[2, 0] = 5f * CorrectedOrientation(pt[2], estimated[2, 0] / 5f); } //run filter and estimate real position and orientation kal.Predict(); estimated = kal.Correct(mk.GetMeasurement()); mk.GoToNextState(); //save estimated position pars[0] = estimated[0, 0]; pars[1] = estimated[1, 0]; pars[2] = estimated[2, 0] / 5f; }
private Point[] aplicarFiltroKalman(MCvBlob blob) { if (mPrimeiraExecucao) { kal.PredictedState = new Matrix <float>(new float[4, 1] { { blob.Center.X }, { blob.Center.Y }, { 0 }, { 0 } }); } Matrix <float> prediction = kal.Predict(); Point predictPt = new Point((int)prediction[0, 0], (int)prediction[1, 0]); // Get blob point medidaKalman[0, 0] = blob.Center.X; medidaKalman[1, 0] = blob.Center.Y; // The update phase Matrix <float> estimado = kal.Correct(medidaKalman); Point estadoPt = new Point((int)estimado[0, 0], (int)estimado[1, 0]); Point medidoPt = new Point((int)medidaKalman[0, 0], (int)medidaKalman[1, 0]); Point[] retorno = { estadoPt, medidoPt }; CvInvoke.WaitKey(10); return(retorno); }
public PointF[] filterPoints(PointF pt, int camID) { PointF[] results = new PointF[2]; if (camID == 0) { syntheticData.state[0, 0] = pt.X; syntheticData.state[1, 0] = pt.Y; Matrix <float> prediction = kal.Predict(); PointF predictPoint = new PointF(prediction[0, 0], prediction[1, 0]); PointF measurePoint = new PointF(syntheticData.GetMeasurement()[0, 0], syntheticData.GetMeasurement()[1, 0]); Matrix <float> estimated = kal.Correct(syntheticData.GetMeasurement()); PointF estimatedPoint = new PointF(estimated[0, 0], estimated[1, 0]); syntheticData.GoToNextState(); results[0] = predictPoint; results[1] = estimatedPoint; px = predictPoint.X; py = predictPoint.Y; cx = estimatedPoint.X; cy = estimatedPoint.Y; } else { syntheticData2.state[0, 0] = pt.X; syntheticData2.state[1, 0] = pt.Y; Matrix <float> prediction = kal.Predict(); PointF predictPoint = new PointF(prediction[0, 0], prediction[1, 0]); PointF measurePoint = new PointF(syntheticData2.GetMeasurement()[0, 0], syntheticData.GetMeasurement()[1, 0]); Matrix <float> estimated = kal.Correct(syntheticData2.GetMeasurement()); PointF estimatedPoint = new PointF(estimated[0, 0], estimated[1, 0]); syntheticData.GoToNextState(); results[0] = predictPoint; results[1] = estimatedPoint; px2 = predictPoint.X; py2 = predictPoint.Y; cx2 = estimatedPoint.X; cy2 = estimatedPoint.Y; } return(results); }
public Point Update(Point pt) { state[0, 0] = (float)pt.X; state[1, 0] = (float)pt.Y; Matrix <float> prediction = kalman.Predict(); Point predictPoint = new Point(prediction[0, 0], prediction[1, 0]); Point measurePoint = new Point(GetMeasurement()[0, 0], GetMeasurement()[1, 0]); Matrix <float> estimated = kalman.Correct(GetMeasurement()); Point estimatedPoint = new Point(estimated[0, 0], estimated[1, 0]); GoToNextState(); //Point[] results = new Point[2]; //results[0] = predictPoint; //预测位置 //results[1] = estimatedPoint; //估计位置 //px = predictPoint.X; //py = predictPoint.Y; //cx = estimatedPoint.X; //cy = estimatedPoint.Y; return(estimatedPoint); }
public Matrix <float> FilterPoints(Kalman kalman, float x, float y, float z) { Matrix <float> prediction = kalman.Predict(); Matrix <float> estimated = kalman.Correct(new Matrix <float>(new[] { x, y, z })); Matrix <float> results = new Matrix <float>(new[, ] { { prediction[0, 0], prediction[1, 0], prediction[2, 0] }, { estimated[0, 0], estimated[1, 0], estimated[2, 0] } }); return(results); }
//Filter data and store values private float[] filterPoints(float[] pt) { //add tracking data as filter state mk.state[0, 0] = pt[0]; mk.state[1, 0] = pt[1]; mk.state[2, 0] = pt[2]; //run filter and estimate real position and orientation kal.Predict(); estimated = kal.Correct(mk.GetMeasurement()); mk.GoToNextState(); //save estimated position pars[0] = estimated[0, 0]; pars[1] = estimated[1, 0]; pars[2] = estimated[2, 0] / 5f; return(pars); }
public void TestKalman() { Image <Bgr, Byte> img = new Image <Bgr, byte>(400, 400); SyntheticData syntheticData = new SyntheticData(); // state is (phi, delta_phi) - angle and angle increment Matrix <float> state = new Matrix <float>(new float[] { 0.0f, 0.0f }); //initial guess #region initialize Kalman filter Kalman tracker = new Kalman(2, 1, 0); tracker.TransitionMatrix = syntheticData.TransitionMatrix; tracker.MeasurementMatrix = syntheticData.MeasurementMatrix; tracker.ProcessNoiseCovariance = syntheticData.ProcessNoise; tracker.MeasurementNoiseCovariance = syntheticData.MeasurementNoise; tracker.ErrorCovariancePost = syntheticData.ErrorCovariancePost; tracker.CorrectedState = state; #endregion System.Converter <double, PointF> angleToPoint = delegate(double radianAngle) { return(new PointF( (float)(img.Width / 2 + img.Width / 3 * Math.Cos(radianAngle)), (float)(img.Height / 2 - img.Width / 3 * Math.Sin(radianAngle)))); }; Action <PointF, Bgr> drawCross = delegate(PointF point, Bgr color) { img.Draw(new Cross2DF(point, 15, 15), color, 1); }; ImageViewer viewer = new ImageViewer(); System.Windows.Forms.Timer timer = new System.Windows.Forms.Timer(); timer.Interval = 200; timer.Tick += new EventHandler(delegate(object sender, EventArgs e) { Matrix <float> measurement = syntheticData.GetMeasurement(); // adjust Kalman filter state tracker.Correct(measurement); tracker.Predict(); #region draw the state, prediction and the measurement PointF statePoint = angleToPoint(tracker.CorrectedState[0, 0]); PointF predictPoint = angleToPoint(tracker.PredictedState[0, 0]); PointF measurementPoint = angleToPoint(measurement[0, 0]); img.SetZero(); //clear the image drawCross(statePoint, new Bgr(Color.White)); //draw current state in White drawCross(measurementPoint, new Bgr(Color.Red)); //draw the measurement in Red drawCross(predictPoint, new Bgr(Color.Green)); //draw the prediction (the next state) in green img.Draw(new LineSegment2DF(statePoint, predictPoint), new Bgr(Color.Magenta), 1); //Draw a line between the current position and prediction of next position //Trace.WriteLine(String.Format("Velocity: {0}", tracker.CorrectedState[1, 0])); #endregion syntheticData.GoToNextState(); viewer.Image = img; }); timer.Start(); viewer.Disposed += delegate(Object sender, EventArgs e) { timer.Stop(); }; viewer.Text = "Actual State: White; Measurement: Red; Prediction: Green"; viewer.ShowDialog(); }