Esempio n. 1
0
    static void DoTrack2()
    {
        TimeSpan seconds;

        if (find_iter != 0)
        {
            if (!(recommender_validate is IIterativeModel))
            {
                Usage("Only iterative recommenders support find_iter.");
            }

            IIterativeModel iterative_recommender_validate = (IIterativeModel)recommender_validate;
            IIterativeModel iterative_recommender_final    = (IIterativeModel)recommender_final;
            Console.WriteLine();

            if (load_model_file == string.Empty)
            {
                recommender_validate.Train();                 // TODO parallelize
                if (prediction_file != string.Empty)
                {
                    recommender_final.Train();
                }
            }

            // evaluate and display results
            double error = KDDCup.EvaluateTrack2(recommender_validate, validation_candidates, validation_hits);
            Console.WriteLine(string.Format(CultureInfo.InvariantCulture, "ERR {0:0.######} {1}", error, iterative_recommender_validate.NumIter));

            for (int i = (int)iterative_recommender_validate.NumIter + 1; i <= max_iter; i++)
            {
                TimeSpan time = Utils.MeasureTime(delegate() {
                    iterative_recommender_validate.Iterate();                     // TODO parallelize
                    if (prediction_file != string.Empty)
                    {
                        iterative_recommender_final.Iterate();
                    }
                });
                training_time_stats.Add(time.TotalSeconds);

                if (i % find_iter == 0)
                {
                    time = Utils.MeasureTime(delegate() {                     // TODO parallelize
                        // evaluate
                        error = KDDCup.EvaluateTrack2(recommender_validate, validation_candidates, validation_hits);
                        err_eval_stats.Add(error);
                        Console.WriteLine(string.Format(CultureInfo.InvariantCulture, "ERR {0:0.######} {1}", error, i));

                        if (prediction_file != string.Empty)
                        {
                            if (predict_score)
                            {
                                Console.Error.WriteLine("Predicting validation scores ...");
                                KDDCup.PredictScoresTrack2(recommender_validate, validation_candidates, prediction_file + "-validate-it-" + i);
                                Console.Error.WriteLine("Predicting real scores ...");
                                KDDCup.PredictScoresTrack2(recommender_final, test_candidates, prediction_file + "-it-" + i);
                            }
                            else
                            {
                                KDDCup.PredictTrack2(recommender_validate, validation_candidates, prediction_file + "-validate-it-" + i);
                                KDDCup.PredictTrack2(recommender_final, test_candidates, prediction_file + "-it-" + i);
                            }
                        }
                    });
                    eval_time_stats.Add(time.TotalSeconds);

                    if (save_model_file != string.Empty)
                    {
                        Recommender.SaveModel(recommender_validate, save_model_file + "-validate", i);
                        if (prediction_file != string.Empty)
                        {
                            Recommender.SaveModel(recommender_final, save_model_file, i);
                        }
                    }

                    if (err_eval_stats.Last() > err_cutoff)
                    {
                        Console.Error.WriteLine("Reached cutoff after {0} iterations.", i);
                        break;
                    }

                    if (err_eval_stats.Last() > err_eval_stats.Min() + epsilon)
                    {
                        Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "Reached convergence (eps={0:0.######}) on training/validation data after {1} iterations.", epsilon, i));
                        break;
                    }

                    DisplayStats();
                }
            }             // for

            DisplayStats();
        }
        else
        {
            if (load_model_file == string.Empty)
            {
                seconds = Utils.MeasureTime(delegate() {                 // TODO parallelize
                    recommender_validate.Train();
                    if (prediction_file != string.Empty)
                    {
                        recommender_final.Train();
                    }
                });
                Console.Write(" training_time " + seconds + " ");
            }

            seconds = Utils.MeasureTime(delegate() {
                // evaluate
                double error = KDDCup.EvaluateTrack2(recommender_validate, validation_candidates, validation_hits);
                Console.Write(string.Format(CultureInfo.InvariantCulture, "ERR {0:0.######}", error));

                if (prediction_file != string.Empty)
                {
                    if (predict_score)
                    {
                        KDDCup.PredictScoresTrack2(recommender_validate, validation_candidates, prediction_file + "-validate");
                        KDDCup.PredictScoresTrack2(recommender_final, test_candidates, prediction_file);
                    }
                    else
                    {
                        KDDCup.PredictTrack2(recommender_validate, validation_candidates, prediction_file + "-validate");
                        KDDCup.PredictTrack2(recommender_final, test_candidates, prediction_file);
                    }
                }
            });
            Console.Write(" evaluation_time " + seconds + " ");

            if (save_model_file != string.Empty)
            {
                Recommender.SaveModel(recommender_validate, save_model_file + "-validate");
                if (prediction_file != string.Empty)
                {
                    Recommender.SaveModel(recommender_final, save_model_file);
                }
            }
        }

        Console.WriteLine();
    }
Esempio n. 2
0
 static double Eval(IList <double> scores, Dictionary <int, IList <int> > candidates, Dictionary <int, IList <int> > hits)
 {
     return(KDDCup.EvaluateTrack2(Scores2Predictions(scores), candidates, hits));
 }
Esempio n. 3
0
    static double Eval(IList <byte> predictions, Dictionary <int, IList <int> > candidates, Dictionary <int, IList <int> > hits)
    {
        double result = KDDCup.EvaluateTrack2(predictions, candidates, hits);

        return(result);
    }
Esempio n. 4
0
    /// <summary>Parameters: num_files weight_1 .. weight_n file_1 .. file_n output_file</summary>
    /// <param name="args">the command-line arguments</param>
    public static void Main(string[] args)
    {
        AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler);

        // parse command-line parameters

        string prediction_file = null;
        //string score_file      = null;
        var p = new OptionSet()
        {
            { "data-dir=", v => data_dir = v },
            { "prediction-file=", v => prediction_file = v },
            { "sigmoid", v => sigmoid = v != null },
            { "pairwise-probability", v => pairwise_prob = v != null },
            { "pairwise-wins", v => pairwise_wins = v != null },
            { "rated-probability", v => rated_prob = v != null },
            { "constant-rating", v => constant_rating = v != null },
            //{ "score-file=",            v => score_file = v },
        };
        IList <string> extra_args = p.Parse(args);

        string rated_file = extra_args[0];

        // combine files
        IList <double> test_scores;
        IList <double> validation_scores;

        if (constant_rating)
        {
            test_scores       = ReadFile(rated_file);
            validation_scores = ReadFile(ValidationFilename(rated_file));
        }
        else
        {
            string rating_file = extra_args[1];
            test_scores       = CombineFiles(rated_file, rating_file);
            validation_scores = CombineFiles(ValidationFilename(rated_file), ValidationFilename(rating_file));
        }

        // compute error on validation set
        string validation_candidates_file = Path.Combine(data_dir, "mml-track2/validationCandidatesIdx2.txt");
        string validation_hits_file       = Path.Combine(data_dir, "mml-track2/validationHitsIdx2.txt");
        var    candidates = Track2Items.Read(validation_candidates_file);
        var    hits       = Track2Items.Read(validation_hits_file);
        double error      = KDDCup.EvaluateTrack2(Decide(validation_scores), candidates, hits);

        Console.WriteLine("ERR {0:F7}", error);

        if (prediction_file != null)
        {
            WritePredictions(Decide(test_scores), prediction_file);
            WritePredictions(Decide(validation_scores), ValidationFilename(prediction_file));
        }

        /*
         * if (score_file != null)
         * {
         *      WriteScores(test_scores, score_file);
         *      WriteScores(test_scores, ValidationFilename(score_file));
         * }
         */
    }