public static void Main(string[] args) { // load the data var user_mapping = new EntityMapping(); var item_mapping = new EntityMapping(); var training_data = ItemRecommendation.Read(args[0], user_mapping, item_mapping); var relevant_users = training_data.AllUsers; // users that will be taken into account in the evaluation var relevant_items = training_data.AllItems; // items that will be taken into account in the evaluation var test_data = ItemRecommendation.Read(args[1], user_mapping, item_mapping); // set up the recommender var recommender = new MostPopular(); recommender.Feedback = training_data; recommender.Train(); // measure the accuracy on the test data set var results = ItemPredictionEval.Evaluate(recommender, test_data, training_data, relevant_users, relevant_items); foreach (var key in results.Keys) { Console.WriteLine("{0}={1}", key, results[key]); } // make a prediction for a certain user and item Console.WriteLine(recommender.Predict(user_mapping.ToInternalID(1), item_mapping.ToInternalID(1))); }
static void LoadData() { TimeSpan loading_time = Utils.MeasureTime(delegate() { // training data training_data = ItemRecommendation.Read(Path.Combine(data_dir, training_file), user_mapping, item_mapping); // relevant users and items if (relevant_users_file != null) { relevant_users = new HashSet <int>(user_mapping.ToInternalID(Utils.ReadIntegers(Path.Combine(data_dir, relevant_users_file)))); } else { relevant_users = training_data.AllUsers; } if (relevant_items_file != null) { relevant_items = new HashSet <int>(item_mapping.ToInternalID(Utils.ReadIntegers(Path.Combine(data_dir, relevant_items_file)))); } else { relevant_items = training_data.AllItems; } if (!(recommender is MyMediaLite.ItemRecommendation.Random)) { ((ItemRecommender)recommender).Feedback = training_data; } // user attributes if (recommender is IUserAttributeAwareRecommender) { if (user_attributes_file == null) { Usage("Recommender expects --user-attributes=FILE."); } else { ((IUserAttributeAwareRecommender)recommender).UserAttributes = AttributeData.Read(Path.Combine(data_dir, user_attributes_file), user_mapping); } } // item attributes if (recommender is IItemAttributeAwareRecommender) { if (item_attributes_file == null) { Usage("Recommender expects --item-attributes=FILE."); } else { ((IItemAttributeAwareRecommender)recommender).ItemAttributes = AttributeData.Read(Path.Combine(data_dir, item_attributes_file), item_mapping); } } if (filtered_eval) { if (item_attributes_file == null) { Usage("--filtered-evaluation expects --item-attributes=FILE."); } else { item_attributes = AttributeData.Read(Path.Combine(data_dir, item_attributes_file), item_mapping); } } // user relation if (recommender is IUserRelationAwareRecommender) { if (user_relations_file == null) { Usage("Recommender expects --user-relation=FILE."); } else { ((IUserRelationAwareRecommender)recommender).UserRelation = RelationData.Read(Path.Combine(data_dir, user_relations_file), user_mapping); Console.WriteLine("relation over {0} users", ((IUserRelationAwareRecommender)recommender).NumUsers); // TODO move to DisplayDataStats } } // item relation if (recommender is IItemRelationAwareRecommender) { if (user_relations_file == null) { Usage("Recommender expects --item-relation=FILE."); } else { ((IItemRelationAwareRecommender)recommender).ItemRelation = RelationData.Read(Path.Combine(data_dir, item_relations_file), item_mapping); Console.WriteLine("relation over {0} items", ((IItemRelationAwareRecommender)recommender).NumItems); // TODO move to DisplayDataStats } } // test data if (test_ratio == 0) { if (test_file != null) { test_data = ItemRecommendation.Read(Path.Combine(data_dir, test_file), user_mapping, item_mapping); } } else { var split = new PosOnlyFeedbackSimpleSplit <PosOnlyFeedback <SparseBooleanMatrix> >(training_data, test_ratio); training_data = split.Train[0]; test_data = split.Test[0]; } }); Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "loading_time {0,0:0.##}", loading_time.TotalSeconds)); }
public static void Main(string[] args) { AppDomain.CurrentDomain.UnhandledException += new UnhandledExceptionEventHandler(Handlers.UnhandledExceptionHandler); // check number of command line parameters if (args.Length < 4) { Usage("Not enough arguments."); } // read command line parameters RecommenderParameters parameters = null; try { parameters = new RecommenderParameters(args, 4); } catch (ArgumentException e) { Usage(e.Message); } // other parameters string data_dir = parameters.GetRemoveString("data_dir"); string relevant_items_file = parameters.GetRemoveString("relevant_items"); string item_attributes_file = parameters.GetRemoveString("item_attributes"); string user_attributes_file = parameters.GetRemoveString("user_attributes"); //string save_mapping_file = parameters.GetRemoveString( "save_model"); int random_seed = parameters.GetRemoveInt32("random_seed", -1); bool no_eval = parameters.GetRemoveBool("no_eval", false); bool compute_fit = parameters.GetRemoveBool("compute_fit", false); if (random_seed != -1) { MyMediaLite.Util.Random.InitInstance(random_seed); } // main data files and method string trainfile = args[0].Equals("-") ? "-" : Path.Combine(data_dir, args[0]); string testfile = args[1].Equals("-") ? "-" : Path.Combine(data_dir, args[1]); string load_model_file = args[2]; string method = args[3]; // set correct recommender switch (method) { case "BPR-MF-ItemMapping": recommender = Recommender.Configure(bprmf_map, parameters, Usage); break; case "BPR-MF-ItemMapping-Optimal": recommender = Recommender.Configure(bprmf_map_bpr, parameters, Usage); break; case "BPR-MF-ItemMapping-Complex": recommender = Recommender.Configure(bprmf_map_com, parameters, Usage); break; case "BPR-MF-ItemMapping-kNN": recommender = Recommender.Configure(bprmf_map_knn, parameters, Usage); break; case "BPR-MF-ItemMapping-SVR": recommender = Recommender.Configure(bprmf_map_svr, parameters, Usage); break; case "BPR-MF-UserMapping": recommender = Recommender.Configure(bprmf_user_map, parameters, Usage); break; case "BPR-MF-UserMapping-Optimal": recommender = Recommender.Configure(bprmf_user_map_bpr, parameters, Usage); break; default: Usage(string.Format("Unknown method: '{0}'", method)); break; } if (parameters.CheckForLeftovers()) { Usage(-1); } // ID mapping objects var user_mapping = new EntityMapping(); var item_mapping = new EntityMapping(); // training data training_data = ItemRecommendation.Read(Path.Combine(data_dir, trainfile), user_mapping, item_mapping); recommender.Feedback = training_data; // relevant items if (!relevant_items_file.Equals(string.Empty)) { relevant_items = new HashSet <int>(item_mapping.ToInternalID(Utils.ReadIntegers(Path.Combine(data_dir, relevant_items_file)))); } else { relevant_items = training_data.AllItems; } // user attributes if (recommender is IUserAttributeAwareRecommender) { if (user_attributes_file.Equals(string.Empty)) { Usage("Recommender expects user_attributes=FILE."); } else { ((IUserAttributeAwareRecommender)recommender).UserAttributes = AttributeData.Read(Path.Combine(data_dir, user_attributes_file), user_mapping); } } // item attributes if (recommender is IItemAttributeAwareRecommender) { if (item_attributes_file.Equals(string.Empty)) { Usage("Recommender expects item_attributes=FILE."); } else { ((IItemAttributeAwareRecommender)recommender).ItemAttributes = AttributeData.Read(Path.Combine(data_dir, item_attributes_file), item_mapping); } } // test data test_data = ItemRecommendation.Read(Path.Combine(data_dir, testfile), user_mapping, item_mapping); TimeSpan seconds; Recommender.LoadModel(recommender, load_model_file); // set the maximum user and item IDs in the recommender - this is important for the cold start use case recommender.MaxUserID = user_mapping.InternalIDs.Max(); recommender.MaxItemID = item_mapping.InternalIDs.Max(); DisplayDataStats(); Console.Write(recommender.ToString() + " "); if (compute_fit) { seconds = Utils.MeasureTime(delegate() { int num_iter = recommender.NumIterMapping; recommender.NumIterMapping = 0; recommender.LearnAttributeToFactorMapping(); Console.Error.WriteLine(); Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "iteration {0} fit {1}", -1, recommender.ComputeFit())); recommender.NumIterMapping = 1; for (int i = 0; i < num_iter; i++, i++) { recommender.IterateMapping(); Console.Error.WriteLine(string.Format(CultureInfo.InvariantCulture, "iteration {0} fit {1}", i, recommender.ComputeFit())); } recommender.NumIterMapping = num_iter; // restore }); } else { seconds = Utils.MeasureTime(delegate() { recommender.LearnAttributeToFactorMapping(); }); } Console.Write("mapping_time " + seconds + " "); if (!no_eval) { seconds = EvaluateRecommender(recommender, test_data, training_data); } Console.WriteLine(); }