public void TestInterval() { Console.WriteLine("TestInterval test"); CpModel model = new CpModel(); IntVar v = model.NewIntVar(-10, 10, "v"); IntervalVar i = model.NewFixedSizeIntervalVar(v, 3, "i"); Assert.Equal("v", i.StartExpr().ShortString()); Assert.Equal("3", i.SizeExpr().ShortString()); Assert.Equal("(v + 3)", i.EndExpr().ShortString()); }
public void RunJobShopScheduling(String solverType) { Solver solver = new Solver(solverType); if (solver == null) { Console.WriteLine("JobShop failed to create a solver " + solverType); return; } // All tasks Dictionary <string, IntervalVar> allTasks = new Dictionary <string, IntervalVar>(); // Creates jobs for (int i = 0; i < allJobs.Count; i++) { for (int j = 0; j < machines.ElementAt(i).Count; j++) { IntervalVar oneTask = solver.MakeFixedDurationIntervalVar(0, horizon, processingTimes.ElementAt(i).ElementAt(j), false, "Job_" + i + "_" + j); //Console.WriteLine("Job_" + i + "_" + j); allTasks.Add("Job_" + i + "_" + j, oneTask); } } // Create sequence variables and add disjuctive constraints List <SequenceVar> allSequences = new List <SequenceVar>(); foreach (var machine in allMachines) { List <IntervalVar> machinesJobs = new List <IntervalVar>(); for (int i = 0; i < allJobs.Count; i++) { for (int k = 0; k < machines.ElementAt(i).Count; k++) { if (machines.ElementAt(i).ElementAt(k) == machine) { machinesJobs.Add(allTasks["Job_" + i + "_" + k]); } } } DisjunctiveConstraint disj = solver.MakeDisjunctiveConstraint(machinesJobs.ToArray(), "machine " + machine); allSequences.Add(disj.SequenceVar()); solver.Add(disj); } // Add conjunctive constraints foreach (var job in allJobs) { for (int j = 0; j < machines.ElementAt(job).Count - 1; j++) { solver.Add(allTasks["Job_" + job + "_" + (j + 1)].StartsAfterEnd(allTasks["Job_" + job + "_" + j])); } } // Set the objective IntVar[] allEnds = new IntVar[jobsCount]; for (int i = 0; i < allJobs.Count; i++) { allEnds[i] = allTasks["Job_" + i + "_" + (machines.ElementAt(i).Count - 1)].EndExpr().Var(); } // Objective: minimize the makespan (maximum end times of all tasks) // of the problem. IntVar objectiveVar = solver.MakeMax(allEnds).Var(); OptimizeVar objectiveMonitor = solver.MakeMinimize(objectiveVar, 1); // Create search phases DecisionBuilder sequencePhase = solver.MakePhase(allSequences.ToArray(), Solver.SEQUENCE_DEFAULT); DecisionBuilder varsPhase = solver.MakePhase(objectiveVar, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // The main decision builder (ranks all tasks, then fixes the // objectiveVariable). DecisionBuilder mainPhase = solver.Compose(sequencePhase, varsPhase); SolutionCollector collector = solver.MakeLastSolutionCollector(); collector.Add(allSequences.ToArray()); collector.Add(objectiveVar); foreach (var i in allMachines) { SequenceVar sequence = allSequences.ElementAt(i); long sequenceCount = sequence.Size(); for (int j = 0; j < sequenceCount; j++) { IntervalVar t = sequence.Interval(j); collector.Add(t.StartExpr().Var()); collector.Add(t.EndExpr().Var()); } } // Search. bool solutionFound = solver.Solve(mainPhase, null, objectiveMonitor, null, collector); if (solutionFound) { //The index of the solution from the collector const int SOLUTION_INDEX = 0; Assignment solution = collector.Solution(SOLUTION_INDEX); string solLine = ""; string solLineTasks = ""; Console.WriteLine("Time Intervals for Tasks\n"); List <List <TimeSpan> > tuplesSolution = new List <List <TimeSpan> >(); for (int m = 0; m < this.machinesCount; m++) { //Console.WriteLine("MachineCount: " + this.machinesCount); solLine = "Machine " + m + " :"; solLineTasks = "Machine " + m + ": "; SequenceVar seq = allSequences.ElementAt(m); int[] storedSequence = collector.ForwardSequence(SOLUTION_INDEX, seq); foreach (int taskIndex in storedSequence) { //Console.WriteLine("taskIndex: " + taskIndex); IntervalVar task = seq.Interval(taskIndex); solLineTasks += task.Name() + " "; //Console.WriteLine("Len: " + storedSequence.Length); } // First GreenTime //TimeSpan timeToAdd = tuplesSolution.First().Last(); TimeSpan timeEndBucket = this.bucketInfo.EndBucket; TimeSpan timeStartBucket = this.bucketInfo.StartBucket; int solutionSize = tuplesSolution.Count; bool isEnd = false; List <int> list_id = jobIds.ElementAt(m); // Adding GreenTime to Solution while (timeStartBucket.CompareTo(timeEndBucket) < 0) { foreach (int taskIndex in storedSequence) { IntervalVar task = seq.Interval(taskIndex); var startValue = TimeSpan.FromSeconds(collector.Value(0, task.StartExpr().Var())); var endValue = TimeSpan.FromSeconds(collector.Value(0, task.EndExpr().Var())); TimeSpan greenTime = endValue.Subtract(startValue); TimeSpan timeEnd; timeEnd = timeStartBucket.Add(greenTime); List <TimeSpan> tuple = new List <TimeSpan>(); tuple.Add(timeStartBucket); if (timeEndBucket.CompareTo(timeEnd) < 0) { timeEnd = timeEndBucket; isEnd = true; } tuple.Add(timeEnd); tuplesSolution.Add(tuple); if (taskIndex + 1 < list_id.Count() && list_id.ElementAt(taskIndex) == list_id.ElementAt(taskIndex + 1)) { timeStartBucket = timeStartBucket.Add(TimeSpan.FromSeconds(this.cycleTime)); } else { timeStartBucket = timeEnd; } if (isEnd) { break; } } } // // Saving the Solution to a XML file // JobShop.save(m, tuplesSolution); //solLine += "\n"; //solLineTasks += "\n"; //Console.WriteLine(solLineTasks); //Console.WriteLine(solLine); } } else { Console.WriteLine("No solution found!"); } }
public void RunJobShopScheduling(String solverType) { Solver solver = new Solver(solverType); if (solver == null) { Console.WriteLine("JobShop failed to create a solver " + solverType); return; } // All tasks Dictionary <string, IntervalVar> allTasks = new Dictionary <string, IntervalVar>(); // Creates jobs for (int i = 0; i < allJobs.Count; i++) { for (int j = 0; j < machines.ElementAt(i).Count; j++) { IntervalVar oneTask = solver.MakeFixedDurationIntervalVar(0, horizon, processingTimes.ElementAt(i).ElementAt(j), false, "Job_" + i + "_" + j); allTasks.Add("Job_" + i + "_" + j, oneTask); } } // Create sequence variables and add disjuctive constraints List <SequenceVar> allSequences = new List <SequenceVar>(); foreach (var machine in allMachines) { List <IntervalVar> machinesJobs = new List <IntervalVar>(); for (int i = 0; i < allJobs.Count; i++) { for (int k = 0; k < machines.ElementAt(i).Count; k++) { if (machines.ElementAt(i).ElementAt(k) == machine) { machinesJobs.Add(allTasks["Job_" + i + "_" + k]); } } } DisjunctiveConstraint disj = solver.MakeDisjunctiveConstraint(machinesJobs.ToArray(), "machine " + machine); allSequences.Add(disj.SequenceVar()); solver.Add(disj); } // Add conjunctive constraints foreach (var job in allJobs) { for (int j = 0; j < machines.ElementAt(job).Count - 1; j++) { solver.Add(allTasks["Job_" + job + "_" + (j + 1)].StartsAfterEnd(allTasks["Job_" + job + "_" + j])); } } // Set the objective IntVar[] allEnds = new IntVar[jobsCount]; for (int i = 0; i < allJobs.Count; i++) { allEnds[i] = allTasks["Job_" + i + "_" + (machines.ElementAt(i).Count - 1)].EndExpr().Var(); } // Objective: minimize the makespan (maximum end times of all tasks) // of the problem. IntVar objectiveVar = solver.MakeMax(allEnds).Var(); OptimizeVar objectiveMonitor = solver.MakeMinimize(objectiveVar, 1); // Create search phases DecisionBuilder sequencePhase = solver.MakePhase(allSequences.ToArray(), Solver.SEQUENCE_DEFAULT); DecisionBuilder varsPhase = solver.MakePhase(objectiveVar, Solver.CHOOSE_FIRST_UNBOUND, Solver.ASSIGN_MIN_VALUE); // The main decision builder (ranks all tasks, then fixes the // objectiveVariable). DecisionBuilder mainPhase = solver.Compose(sequencePhase, varsPhase); SolutionCollector collector = solver.MakeLastSolutionCollector(); collector.Add(allSequences.ToArray()); collector.Add(objectiveVar); foreach (var i in allMachines) { SequenceVar sequence = allSequences.ElementAt(i); long sequenceCount = sequence.Size(); for (int j = 0; j < sequenceCount; j++) { IntervalVar t = sequence.Interval(j); collector.Add(t.StartExpr().Var()); collector.Add(t.EndExpr().Var()); } } // Search. bool solutionFound = solver.Solve(mainPhase, null, objectiveMonitor, null, collector); if (solutionFound) { //The index of the solution from the collector const int SOLUTION_INDEX = 0; Assignment solution = collector.Solution(SOLUTION_INDEX); string solLine = ""; string solLineTasks = ""; Console.WriteLine("Time Intervals for Tasks\n"); for (int m = 0; m < this.machinesCount; m++) { //Console.WriteLine("MachineCount: " + this.machinesCount); solLine = "Machine " + m + " :"; solLineTasks = "Machine " + m + ": "; SequenceVar seq = allSequences.ElementAt(m); int[] storedSequence = collector.ForwardSequence(SOLUTION_INDEX, seq); foreach (int taskIndex in storedSequence) { //Console.WriteLine("taskIndex: " + taskIndex); IntervalVar task = seq.Interval(taskIndex); solLineTasks += task.Name() + " "; //Console.WriteLine("Len: " + storedSequence.Length); } foreach (int taskIndex in storedSequence) { IntervalVar task = seq.Interval(taskIndex); string solTemp = "[" + collector.Value(0, task.StartExpr().Var()) + ","; solTemp += collector.Value(0, task.EndExpr().Var()) + "] "; solLine += solTemp; } //solLine += "\n"; solLineTasks += "\n"; //Console.WriteLine(solLineTasks); Console.WriteLine(solLine); } } else { Console.WriteLine("No solution found!"); } }