public override void CiclicCrossover(IndividualBase parent1, IndividualBase parent2, out IndividualBase child1, out IndividualBase child2)
        {
            int[] L1 = (int[])(parent1 as CryptArithmeticSolution).LettersValues.Clone();
            int[] L2 = (int[])(parent2 as CryptArithmeticSolution).LettersValues.Clone();

            List<int> positionsToShare = new List<int>();

            int amountOfChars = charArray.Count();
            int itemIdx = Aleatoriety.GetRandomInt(amountOfChars);
            int tempValue;

            while (!positionsToShare.Contains(itemIdx)) {
                positionsToShare.Add(itemIdx);
                tempValue = L1[itemIdx];
                itemIdx = Array.IndexOf(L2, tempValue);
            }

            int tempVal;
            foreach (int position in positionsToShare) {
                tempVal = L2[position];
                L2[position] = L1[position];
                L1[position] = tempVal;
            }
            child1 = new CryptArithmeticSolution(this, L1);
            child2 = new CryptArithmeticSolution(this, L2);
        }
        // TODO: Testing
        public override void ValidateIndividual(IndividualBase individual)
        {
            TaskSchedulingSolution schedulingSolution = (individual as TaskSchedulingSolution);

            List <List <TaskIndexingNode> > TasksGroupedByProcessor = GroupTasksByProcessor(schedulingSolution);

            for (int processorIdx = 0; processorIdx < ProcessorCount; ++processorIdx)
            {
                List <TaskIndexingNode> TasksInProcessor = TasksGroupedByProcessor[processorIdx];
                for (int probableDependantIdx = 0; probableDependantIdx < TasksInProcessor.Count; ++probableDependantIdx)
                {
                    int probableDependantTask = TasksInProcessor[probableDependantIdx].Task;
                    for (int probableDependencyIdx = probableDependantIdx + 1; probableDependencyIdx < TasksInProcessor.Count; ++probableDependencyIdx)
                    {
                        int probableDependencyTask = TasksInProcessor[probableDependencyIdx].Task;
                        if (CommGraph.DependsOn(probableDependantTask, probableDependencyTask))
                        {
                            schedulingSolution.SwapGenesAt(TasksInProcessor[probableDependantIdx].Index, TasksInProcessor[probableDependencyIdx].Index);
                            TasksInProcessor.Swap(probableDependantIdx, probableDependencyIdx);
                            int Temp = TasksInProcessor[probableDependantIdx].Index;
                            TasksInProcessor[probableDependantIdx].Index  = TasksInProcessor[probableDependencyIdx].Index;
                            TasksInProcessor[probableDependencyIdx].Index = Temp;
                            probableDependantIdx = -1;
                            break;
                        }
                    }
                }
            }
        }
        public override void EvaluateIndividual(IndividualBase individual)
        {
            CryptArithmeticSolution cryptoSolution = (individual as CryptArithmeticSolution);
            long termsSum = 0;
            int charValue = -1;
            foreach (string term in terms) {
                long termCharSum = 0;
                long decimalBaseValTerm = 1;
                foreach (char c in term.ToCharArray().Reverse()) {
                    charValue = cryptoSolution.LettersValues[Array.IndexOf(charArray, c)];
                    termCharSum += (charValue * decimalBaseValTerm);
                    decimalBaseValTerm *= 10;
                }
                termsSum += termCharSum;
            }

            long resultCharSum = 0;
            long decimalBaseValResult = 1;
            foreach (char c in result.ToCharArray().Reverse()) {
                charValue = cryptoSolution.LettersValues[Array.IndexOf(charArray, c)];
                resultCharSum += (charValue * decimalBaseValResult);
                decimalBaseValResult *= 10;
            }
            long resultValue = resultCharSum;

            cryptoSolution.DifferenceInExpectedResult = (int)Math.Abs(resultValue - termsSum);
            individual = cryptoSolution;
        }
        public override void EvaluateIndividual(IndividualBase individual)
        {
            CryptArithmeticSolution cryptoSolution = (individual as CryptArithmeticSolution);
            long termsSum  = 0;
            int  charValue = -1;

            foreach (string term in terms)
            {
                long termCharSum        = 0;
                long decimalBaseValTerm = 1;
                foreach (char c in term.ToCharArray().Reverse())
                {
                    charValue           = cryptoSolution.LettersValues[Array.IndexOf(charArray, c)];
                    termCharSum        += (charValue * decimalBaseValTerm);
                    decimalBaseValTerm *= 10;
                }
                termsSum += termCharSum;
            }

            long resultCharSum        = 0;
            long decimalBaseValResult = 1;

            foreach (char c in result.ToCharArray().Reverse())
            {
                charValue             = cryptoSolution.LettersValues[Array.IndexOf(charArray, c)];
                resultCharSum        += (charValue * decimalBaseValResult);
                decimalBaseValResult *= 10;
            }
            long resultValue = resultCharSum;

            cryptoSolution.DifferenceInExpectedResult = (int)Math.Abs(resultValue - termsSum);
            individual = cryptoSolution;
        }
Esempio n. 5
0
 private IndividualBase BestByCrowdedComparison(IndividualBase individual1, IndividualBase individual2)
 {
     if (individual1.NonDominationRank < individual2.NonDominationRank)
     {
         return(individual1);
     }
     if (individual2.NonDominationRank < individual1.NonDominationRank)
     {
         return(individual2);
     }
     // Se Estão no Mesmo Ranking de Não-Dominância
     if (individual1.CrowdingDistance > individual2.CrowdingDistance)
     {
         return(individual1);
     }
     if (individual2.CrowdingDistance > individual1.CrowdingDistance)
     {
         return(individual2);
     }
     // Se têm a Mesma CrowdingDistance
     if (Aleatoriety.GetRandomInt(2) == 0)
     {
         return(individual1);
     }
     else
     {
         return(individual2);
     }
 }
        public override void CiclicCrossover(IndividualBase parent1, IndividualBase parent2, out IndividualBase child1, out IndividualBase child2)
        {
            int[] L1 = (int[])(parent1 as CryptArithmeticSolution).LettersValues.Clone();
            int[] L2 = (int[])(parent2 as CryptArithmeticSolution).LettersValues.Clone();

            List <int> positionsToShare = new List <int>();

            int amountOfChars = charArray.Count();
            int itemIdx       = Aleatoriety.GetRandomInt(amountOfChars);
            int tempValue;

            while (!positionsToShare.Contains(itemIdx))
            {
                positionsToShare.Add(itemIdx);
                tempValue = L1[itemIdx];
                itemIdx   = Array.IndexOf(L2, tempValue);
            }

            int tempVal;

            foreach (int position in positionsToShare)
            {
                tempVal      = L2[position];
                L2[position] = L1[position];
                L1[position] = tempVal;
            }
            child1 = new CryptArithmeticSolution(this, L1);
            child2 = new CryptArithmeticSolution(this, L2);
        }
Esempio n. 7
0
 //CONFERIR
 public int finalFitnessComparison(IndividualBase i1, IndividualBase i2)
 {
     return(i1.FinalFitness < i2.FinalFitness ? // se i1 for menor
            1 :                                 //retorna 1 (i1)
            i2.FinalFitness < i1.FinalFitness ? //se i2 for menor
            -1 :                                //retorna -1 (i2)
            0);                                 //se for igual, retorna 0
 }
 public void RandomInitialize()
 {
     // Generate Initial Population
     for (int idx = 0; idx < this.InitialPopulationSize; ++idx)
     {
         IndividualBase individual = problem.CreateRandomSolution();
         IndividualEvaluator.Execute(individual, problem);
         AddIndividual(individual);
     }
 }
        public IndividualBase Execute(int numberOfExecutions, out string convergenceReport)
        {
            int            bestResultCount;
            IndividualBase bestSolutionFound = Execute(numberOfExecutions, out bestResultCount);
            int            bestSolutionOccurencePercentage = (bestResultCount * 100 / numberOfExecutions);

            convergenceReport = "A melhor solução encontrada foi de valor: " +
                                bestSolutionFound.GetValueForObjective(Problem.MonoObjectiveGoal) +
                                ", tendo ocorrido: " + bestSolutionOccurencePercentage + "% das execuções.";
            return(bestSolutionFound);
        }
        private double DistanceBetween(IndividualBase i1, IndividualBase i2)
        {
            double distance = 0;

            foreach (Objective objective in i1.Problem.MultiObjectiveGoal)
            {
                double difference = i1.GetNormalizedValueForObjective(objective) - i2.GetNormalizedValueForObjective(objective); //calcular a distancia parcial como sendo a diferença
                distance += Math.Pow(difference, 2);
            }
            return(distance);
        }
Esempio n. 11
0
        private IndividualBase BinaryTournment(Population_MultiObjective_AG population)
        {
            IndividualBase[] contestants = new IndividualBase[2];

            contestants[0] = population.GetRandomIndividual();
            do
            {
                contestants[1] = population.GetRandomIndividual();
            } while (contestants[0] == contestants[1]);

            return(BestByCrowdedComparison(contestants[0], contestants[1]));
        }
        public override void MutateIndividual(IndividualBase individual)
        {
            TaskSchedulingSolution schedulingSolution = (individual as TaskSchedulingSolution);
            int indexA = Aleatoriety.GetRandomInt(TaskCount);
            int indexB;

            do
            {
                indexB = Aleatoriety.GetRandomInt(TaskCount);
            } while (indexB == indexA);
            schedulingSolution.SwapGenesAt(indexA, indexB);
            schedulingSolution.SwapProcessorAt(indexA);
        }
Esempio n. 13
0
        public static int CrowdedComparison(IndividualBase i1, IndividualBase i2)
        {
            int partial = i1.NonDominationRank < i2.NonDominationRank ? // se i1 for de um front menor
                          1 :                                           //retorna 1 (i1)
                          i2.NonDominationRank < i1.NonDominationRank ? //se i2 for de um front menor
                          -1 :                                          //retorna -1 (i2)
                          0;                                            //se for igual, retorna a comparação entre as distâncias

            if (!partial.Equals(0))
            {
                return(partial);
            }
            return(i1.CrowdingDistance.CompareTo(i2.CrowdingDistance));
        }
        public override void PMXCrossover(IndividualBase parent1, IndividualBase parent2, out IndividualBase child1, out IndividualBase child2)
        {
            int[,] parent1Scheduling = (parent1 as TaskSchedulingSolution).GeneticMaterial;
            int[,] parent2Scheduling = (parent2 as TaskSchedulingSolution).GeneticMaterial;

            int startIdxInclusive = Aleatoriety.GetRandomInt(TaskCount - 1);
            int endIdxExclusive   = Aleatoriety.GetRandomInt(startIdxInclusive + 1, TaskCount + 1);

            int[,] L1 = new int[2, TaskCount];
            int[,] L2 = new int[2, TaskCount];

            int L1idx;
            int L2idx;

            for (int idx = 0; idx < TaskCount; ++idx)
            {
                if ((idx < startIdxInclusive) || (idx >= endIdxExclusive))
                {
                    int L1CopyFromTask      = parent1Scheduling[0, idx];
                    int L1CopyFromProcessor = parent1Scheduling[1, idx];
                    while ((L1idx = IndexOfTaskInInterval(L1CopyFromTask, startIdxInclusive, endIdxExclusive, parent2Scheduling)) != -1)
                    {
                        L1CopyFromTask      = parent1Scheduling[0, L1idx];
                        L1CopyFromProcessor = parent1Scheduling[1, L1idx];
                    }
                    L1[0, idx] = L1CopyFromTask;
                    L1[1, idx] = L1CopyFromProcessor;

                    int L2CopyFromTask      = parent2Scheduling[0, idx];
                    int L2CopyFromProcessor = parent2Scheduling[1, idx];
                    while ((L2idx = IndexOfTaskInInterval(L2CopyFromTask, startIdxInclusive, endIdxExclusive, parent1Scheduling)) != -1)
                    {
                        L2CopyFromTask      = parent2Scheduling[0, L2idx];
                        L2CopyFromProcessor = parent2Scheduling[1, L2idx];
                    }
                    L2[0, idx] = L2CopyFromTask;
                    L2[1, idx] = L2CopyFromProcessor;
                }
                else
                {
                    L1[0, idx] = parent2Scheduling[0, idx];
                    L1[1, idx] = parent2Scheduling[1, idx];
                    L2[0, idx] = parent1Scheduling[0, idx];
                    L2[1, idx] = parent1Scheduling[1, idx];
                }
            }

            child1 = new TaskSchedulingSolution(this, L1);
            child2 = new TaskSchedulingSolution(this, L2);
        }
 public void RandomInitialize()
 {
     // Generate Initial Population
     while (IndividualCount < this.InitialPopulationSize)
     {
         IndividualBase individual = Problem.CreateRandomSolution();
         Problem.ValidateIndividual(individual);
         IndividualEvaluator.Execute(individual, Problem);
         if (!Content.Contains(individual))
         {
             AddIndividual(individual);
         }
     }
 }
        public static void Execute(IndividualBase individual, ProblemBase problem)
        {
            problem.EvaluateIndividual(individual);

            if (!individual.WasEvaluated)
            {
                individual.ObjectivesValuesForMaximization.Add(double.MaxValue);
                individual.ObjectivesValuesForNormalization.Add(double.MaxValue);
            }

            Objective objective = problem.MonoObjectiveGoal;

            individual.SetFitnessForObjective(objective);
            individual.WasEvaluated = true;
        }
        protected override void EvaluateObjectiveValues()
        {
            // Create Temporary Individuals
            List <IndividualBase> temporaryList = new List <IndividualBase>();

            for (int iCount = 0; iCount < 200; ++iCount)
            {
                IndividualBase i = Problem.CreateRandomSolution();
                IndividualEvaluator.Execute(i, Problem);
                temporaryList.Add(i);
            }
            double maxValueFound   = temporaryList.Max(I => I.GetFitnessForObjective(Problem.MonoObjectiveGoal));
            double adaptedMaxValue = Math.Abs(maxValueFound) * 2;

            Problem.MonoObjectiveGoal.BigValueForMaximization = adaptedMaxValue;
        }
        public override string SerializeIndividual(IndividualBase individual)
        {
            StringBuilder SB = new StringBuilder();

            SB.AppendLine("Individual:");
            SB.AppendLine("\t" + "Value: " + individual.GetValueForObjective(MonoObjectiveGoal));
            CryptArithmeticSolution cryptoSolution = (individual as CryptArithmeticSolution);
            int charValue = -1;

            for (int idx = 0; idx < charArray.Length; ++idx)
            {
                charValue = cryptoSolution.LettersValues[idx];
                SB.AppendLine("\t" + charArray[idx] + ": " + charValue);
            }
            return(SB.ToString());
        }
Esempio n. 19
0
        private Population_MultiObjective_AG Procreate(Population_MultiObjective_AG mating)
        {
            int expectedChildCount = InitialPopulationSize;

            Population_MultiObjective_AG newGeneration = new Population_MultiObjective_AG(Problem, expectedChildCount);

            while (newGeneration.IndividualCount < expectedChildCount)
            {
                // Selection Method
                IndividualBase parent1 = BinaryTournment(mating);
                IndividualBase parent2 = BinaryTournment(mating);
                IndividualBase child1 = null, child2 = null;

                // Crossover Method
                Problem.PMXCrossover(parent1, parent2, out child1, out child2);
                for (int i = 0; i < 10; ++i)
                {
                    if (!newGeneration.Content.Contains(child1) || i == 9)
                    {
                        newGeneration.AddIndividual(child1);
                        break;
                    }
                }
                for (int i = 0; i < 10; ++i)
                {
                    if (!newGeneration.Content.Contains(child2) || i == 9)
                    {
                        newGeneration.AddIndividual(child2);
                        break;
                    }
                }
            }

            foreach (IndividualBase individual in newGeneration.Content)
            {
                int aleatoryPercentage = Aleatoriety.GetRandomInt(100);
                if (aleatoryPercentage < mutationPct)
                {
                    Problem.MutateIndividual(individual);
                }
                Problem.ValidateIndividual(individual);
                IndividualEvaluator.Execute(individual, Problem);
            }
            return(newGeneration);
        }
        public override string NewSerializeIndividual(IndividualBase individual)
        {
            TaskSchedulingSolution schedulingSolution = (individual as TaskSchedulingSolution);

            List <List <TaskIndexingNode> > tasksGroupedByProcessor = GroupTasksByProcessor(schedulingSolution);

            StringBuilder sb = new StringBuilder();

            sb.Append("MakeSpan: " + individual.GetValueForObjective(MultiObjectiveGoal.First()) + " _ ");
            sb.Append("Potencia: " + individual.GetValueForObjective(MultiObjectiveGoal.Last()) + " _ ");

            for (int idx = 0; idx < TaskCount - 1; ++idx)
            {
                sb.Append(" " + schedulingSolution.GeneticMaterial[0, idx] + " (" + schedulingSolution.GeneticMaterial[1, idx] + ") -");
            }
            sb.Append(" " + schedulingSolution.GeneticMaterial[0, TaskCount - 1] + " (" + schedulingSolution.GeneticMaterial[1, TaskCount - 1] + ")");
            return(sb.ToString());
        }
        public override void MutateIndividual(IndividualBase individual)
        {
            CryptArithmeticSolution cryptoSolution = (individual as CryptArithmeticSolution);
            int amountOfChars    = charArray.Count();
            int firstPositionIdx = Aleatoriety.GetRandomInt(amountOfChars);
            int secondPositionIdx;

            do
            {
                secondPositionIdx = Aleatoriety.GetRandomInt(amountOfChars);
            } while (secondPositionIdx == firstPositionIdx);

            int tempValue = cryptoSolution.LettersValues[secondPositionIdx];

            cryptoSolution.LettersValues[secondPositionIdx] = cryptoSolution.LettersValues[firstPositionIdx];
            cryptoSolution.LettersValues[firstPositionIdx]  = tempValue;
            individual = cryptoSolution;
        }
Esempio n. 22
0
        public override void Execute(PopulationBase population, out IndividualBase chosenIndividual1, out IndividualBase chosenIndividual2)
        {
            IndividualBase[] selectedParents = new IndividualBase[2];

            for (int individualIdx = 0; individualIdx < 2; ++individualIdx)
            {
                selectedParents[individualIdx] = population.GetRandomIndividual();
                for (int selectionIdx = 1; selectionIdx < tourSize; ++selectionIdx)
                {
                    IndividualBase randomIndividual = population.GetRandomIndividual();
                    if (randomIndividual.GetFitnessForObjective(Problem.MonoObjectiveGoal) > selectedParents[individualIdx].GetFitnessForObjective(Problem.MonoObjectiveGoal))
                    {
                        selectedParents[individualIdx] = randomIndividual;
                    }
                }
            }
            chosenIndividual1 = selectedParents[0];
            chosenIndividual2 = selectedParents[1];
        }
Esempio n. 23
0
        private IndividualBase BinaryTournment(Population_MultiObjective_AG population)
        {
            IndividualBase[] contestants = new IndividualBase[2];

            contestants[0] = population.GetRandomIndividual();
            for (int i = 0; i < 10; ++i)
            {
                contestants[1] = population.GetRandomIndividual();
                if ((contestants[0] != contestants[1]) || i == 9)
                {
                    break;
                }
            }
            //do {
            //    contestants[1] = population.GetRandomIndividual();
            //} while (contestants[0] == contestants[1]);

            return(finalFitnessComparison(contestants[0], contestants[1]) >= 0 ? contestants[0] : contestants[1]);
        }
 public void Truncate(int archiveSize)
 {
     CalculateSortedDistances();
     while (IndividualCount > archiveSize)
     {
         double smallestDistanceValue         = double.MaxValue;
         int    smallestDistanceIdx           = 0;
         bool   IsSmallestDistanceUniqueByIdx = true;
         for (int distanceIdx = 0; distanceIdx < Content.Count; ++distanceIdx)
         {
             IsSmallestDistanceUniqueByIdx = true;
             foreach (IndividualBase individual in Content)
             {
                 double distanceForIdx = individual.DistancesToOtherIndividuals[distanceIdx].Item2;
                 if (distanceForIdx < smallestDistanceValue)
                 {
                     IsSmallestDistanceUniqueByIdx = true;
                     smallestDistanceIdx           = distanceIdx;
                     smallestDistanceValue         = distanceForIdx;
                 }
                 else
                 {
                     IsSmallestDistanceUniqueByIdx = false;
                     if (smallestDistanceValue == 0)
                     {
                         break;
                     }
                 }
             }
             if (IsSmallestDistanceUniqueByIdx)
             {
                 break;
             }
         }
         IndividualBase individualForRemoval = Content[smallestDistanceIdx];
         Content.Remove(individualForRemoval);
         foreach (IndividualBase i in Content)
         {
             i.DistancesToOtherIndividuals.RemoveAll(I => I.Item1 == individualForRemoval);
         }
     }
 }
        public override string SerializeIndividual(IndividualBase individual)
        {
            TaskSchedulingSolution schedulingSolution = (individual as TaskSchedulingSolution);

            List <List <TaskIndexingNode> > tasksGroupedByProcessor = GroupTasksByProcessor(schedulingSolution);

            StringBuilder sb = new StringBuilder();

            sb.AppendLine("Individual:");
            sb.AppendLine("\t" + "Value: " + individual.GetValueForObjective(MonoObjectiveGoal));
            for (int processorIdx = 0; processorIdx < ProcessorCount; ++processorIdx)
            {
                sb.Append("\t" + "P" + processorIdx + ": " + "[");
                foreach (int task in tasksGroupedByProcessor[processorIdx].Select(TIN => TIN.Task))
                {
                    sb.Append(" " + task + " |");
                }
                sb.Append("| " + schedulingSolution.ProcessorStatus[processorIdx] + " ]");
                sb.Append(Environment.NewLine);
            }
            return(sb.ToString());
        }
        private IndividualBase Execute(int numberOfExecutions, out int bestResultCount)
        {
            IndividualBase bestIndividual   = Execute();
            double         bestCurrentValue = bestIndividual.GetFitnessForObjective(Problem.MonoObjectiveGoal);

            bestResultCount = 1;
            for (int executionCount = 1; executionCount < numberOfExecutions; ++executionCount)
            {
                IndividualBase currentIndividual = Execute();
                double         currentValue      = currentIndividual.GetFitnessForObjective(Problem.MonoObjectiveGoal);
                if (currentValue > bestCurrentValue)
                {
                    bestIndividual   = currentIndividual;
                    bestCurrentValue = currentValue;
                    bestResultCount  = 1;
                }
                else if (currentValue == bestCurrentValue)
                {
                    ++bestResultCount;
                }
            }
            return(bestIndividual);
        }
        private Population_MonoObjective_AG RunGeneration(Population_MonoObjective_AG currentGeneration, SelectionMethodBase selectionMethod, CrossoverMethodBase crossoverMethod, /*IReinsertionMethod reinsertionMethod, */ ReinsertionMethodBase reinsertionMethod)
        {
            Population_MonoObjective_AG recentlyBorn = new Population_MonoObjective_AG(Problem, InitialPopulationSize);

            int expectedChildCount = ((InitialPopulationSize * reinsertionMethod.OffspringPercentage) / 100);

            while (recentlyBorn.IndividualCount < expectedChildCount)
            {
                IndividualBase parent1 = null, parent2 = null, child1 = null, child2 = null;
                selectionMethod.Execute(currentGeneration, out parent1, out parent2);
                crossoverMethod.Execute(parent1, parent2, out child1, out child2);
                recentlyBorn.AddIndividual(child1);
                recentlyBorn.AddIndividual(child2);
            }

            int mutatedChildCount = ((recentlyBorn.IndividualCount * mutationPct) / 100);

            for (int idx = 0; idx < mutatedChildCount; ++idx)
            {
                IndividualBase randomIndividual = recentlyBorn.GetRandomIndividual();
                Problem.MutateIndividual(randomIndividual);
            }

            IndividualBase individual = null;

            for (int idx = 0; idx < recentlyBorn.IndividualCount; ++idx)
            {
                individual = recentlyBorn.Content[idx];
                Problem.ValidateIndividual(individual);
                IndividualEvaluator.Execute(individual, Problem);
            }

            Population_MonoObjective_AG newGeneration = reinsertionMethod.Execute(currentGeneration, recentlyBorn);

            return(newGeneration);
        }
 public override void CiclicCrossover(IndividualBase parent1, IndividualBase parent2, out IndividualBase child1, out IndividualBase child2)
 {
     throw new NotImplementedException();
 }
        // TODO: Testing
        public override void ValidateIndividual(IndividualBase individual)
        {
            TaskSchedulingSolution schedulingSolution = (individual as TaskSchedulingSolution);

            List<List<TaskIndexingNode>> TasksGroupedByProcessor = GroupTasksByProcessor(schedulingSolution);

            for (int processorIdx = 0; processorIdx < ProcessorCount; ++processorIdx) {
                List<TaskIndexingNode> TasksInProcessor = TasksGroupedByProcessor[processorIdx];
                for (int probableDependantIdx = 0; probableDependantIdx < TasksInProcessor.Count; ++probableDependantIdx) {
                    int probableDependantTask = TasksInProcessor[probableDependantIdx].Task;
                    for (int probableDependencyIdx = probableDependantIdx + 1; probableDependencyIdx < TasksInProcessor.Count; ++probableDependencyIdx) {
                        int probableDependencyTask = TasksInProcessor[probableDependencyIdx].Task;
                        if(CommGraph.DependsOn(probableDependantTask, probableDependencyTask)) {
                            schedulingSolution.SwapGenesAt(TasksInProcessor[probableDependantIdx].Index, TasksInProcessor[probableDependencyIdx].Index);
                            TasksInProcessor.Swap(probableDependantIdx, probableDependencyIdx);
                            int Temp = TasksInProcessor[probableDependantIdx].Index;
                            TasksInProcessor[probableDependantIdx].Index = TasksInProcessor[probableDependencyIdx].Index;
                            TasksInProcessor[probableDependencyIdx].Index = Temp;
                            probableDependantIdx = -1;
                            break;
                        }
                    }
                }
            }
        }
        public override string SerializeIndividual(IndividualBase individual)
        {
            TaskSchedulingSolution schedulingSolution = (individual as TaskSchedulingSolution);

            List<List<TaskIndexingNode>> tasksGroupedByProcessor = GroupTasksByProcessor(schedulingSolution);

            StringBuilder sb = new StringBuilder();
            sb.AppendLine("Individual:");
            sb.AppendLine("\t" + "Value: " + individual.GetValueForObjective(MonoObjectiveGoal));
            for (int processorIdx = 0; processorIdx < ProcessorCount; ++processorIdx) {
                sb.Append("\t" + "P" + processorIdx + ": " + "[");
                foreach (int task in tasksGroupedByProcessor[processorIdx].Select(TIN => TIN.Task)) {
                    sb.Append(" " + task + " |");
                }
                sb.Append("| " + schedulingSolution.ProcessorStatus[processorIdx] + " ]");
                sb.Append(Environment.NewLine);
            }
            return sb.ToString();
        }
        public override void PMXCrossover(IndividualBase parent1, IndividualBase parent2, out IndividualBase child1, out IndividualBase child2)
        {
            int[,] parent1Scheduling = (parent1 as TaskSchedulingSolution).GeneticMaterial;
            int[,] parent2Scheduling = (parent2 as TaskSchedulingSolution).GeneticMaterial;

            int startIdxInclusive = Aleatoriety.GetRandomInt(TaskCount - 1);
            int endIdxExclusive = Aleatoriety.GetRandomInt(startIdxInclusive + 1, TaskCount + 1);

            int[,] L1 = new int[2, TaskCount];
            int[,] L2 = new int[2, TaskCount];

            int L1idx;
            int L2idx;

            for (int idx = 0; idx < TaskCount; ++idx) {
                if ((idx < startIdxInclusive) || (idx >= endIdxExclusive)) {
                    int L1CopyFromTask = parent1Scheduling[0, idx];
                    int L1CopyFromProcessor = parent1Scheduling[1, idx];
                    while ((L1idx = IndexOfTaskInInterval(L1CopyFromTask, startIdxInclusive, endIdxExclusive, parent2Scheduling)) != -1) {
                        L1CopyFromTask = parent1Scheduling[0, L1idx];
                        L1CopyFromProcessor = parent1Scheduling[1, L1idx];
                    }
                    L1[0, idx] = L1CopyFromTask;
                    L1[1, idx] = L1CopyFromProcessor;

                    int L2CopyFromTask = parent2Scheduling[0, idx];
                    int L2CopyFromProcessor = parent2Scheduling[1, idx];
                    while ((L2idx = IndexOfTaskInInterval(L2CopyFromTask, startIdxInclusive, endIdxExclusive, parent1Scheduling)) != -1) {
                        L2CopyFromTask = parent2Scheduling[0, L2idx];
                        L2CopyFromProcessor = parent2Scheduling[1, L2idx];
                    }
                    L2[0, idx] = L2CopyFromTask;
                    L2[1, idx] = L2CopyFromProcessor;
                }
                else {
                    L1[0, idx] = parent2Scheduling[0, idx];
                    L1[1, idx] = parent2Scheduling[1, idx];
                    L2[0, idx] = parent1Scheduling[0, idx];
                    L2[1, idx] = parent1Scheduling[1, idx];
                }
            }

            child1 = new TaskSchedulingSolution(this, L1);
            child2 = new TaskSchedulingSolution(this, L2);
        }
        public override string NewSerializeIndividual(IndividualBase individual)
        {
            TaskSchedulingSolution schedulingSolution = (individual as TaskSchedulingSolution);

            List<List<TaskIndexingNode>> tasksGroupedByProcessor = GroupTasksByProcessor(schedulingSolution);

            StringBuilder sb = new StringBuilder();
            sb.Append("MakeSpan: " + individual.GetValueForObjective(MultiObjectiveGoal.First()) + " _ ");
            sb.Append("Potencia: " + individual.GetValueForObjective(MultiObjectiveGoal.Last()) + " _ ");

            for (int idx = 0; idx < TaskCount - 1; ++idx)
                sb.Append(" " + schedulingSolution.GeneticMaterial[0, idx] + " (" + schedulingSolution.GeneticMaterial[1, idx] + ") -");
            sb.Append(" " + schedulingSolution.GeneticMaterial[0, TaskCount - 1] + " (" + schedulingSolution.GeneticMaterial[1, TaskCount - 1] + ")");
            return sb.ToString();
        }
 public override void MutateIndividual(IndividualBase individual)
 {
     TaskSchedulingSolution schedulingSolution = (individual as TaskSchedulingSolution);
     int indexA = Aleatoriety.GetRandomInt(TaskCount);
     int indexB;
     do {
         indexB = Aleatoriety.GetRandomInt(TaskCount);
     } while (indexB == indexA);
     schedulingSolution.SwapGenesAt(indexA, indexB);
     schedulingSolution.SwapProcessorAt(indexA);
 }
        public override void EvaluateIndividual(IndividualBase individual)
        {
            REDO:

            TaskSchedulingSolution schedulingSolution = individual as TaskSchedulingSolution;
            schedulingSolution.SpentPower = 0;
            double pCommunication = 0;
            int pTask = 0;

            bool[] scheduledTasks = new bool[TaskCount];
            int remainingTasks = TaskCount;
            int[] processorsSchedullingTimeForTask = new int[TaskCount];
            schedulingSolution.ProcessorStatus = new int[ProcessorCount];
            int currentAllocationCost;

            List<List<TaskIndexingNode>> tasksGroupedByProcessor = GroupTasksByProcessor(schedulingSolution);

            bool deadLockOcurred;
            do {
                for (int currentProcessor = 0; currentProcessor < ProcessorCount; ++currentProcessor) {
                    if (tasksGroupedByProcessor[currentProcessor].Count != 0) {
                        int nextTaskForProcessor = tasksGroupedByProcessor[currentProcessor][0].Task;
                        IEnumerable<int> notScheduledTaskDependencies = CommGraph.GetDirectDependencies(nextTaskForProcessor).Where(Dep => scheduledTasks[Dep] == false);
                        bool readyForScheduling = (notScheduledTaskDependencies.Count() == 0);
                        if (readyForScheduling) {
                            int currentTask = nextTaskForProcessor;
                            currentAllocationCost = schedulingSolution.ProcessorStatus[currentProcessor];
                            foreach (int dependencyTask in CommGraph.GetDirectDependencies(currentTask)) {
                                int idx = 0;
                                while (schedulingSolution.GeneticMaterial[0, idx] != dependencyTask)
                                    ++idx;
                                int dependencyProcessor = schedulingSolution.GeneticMaterial[1, idx];
                                if (dependencyProcessor != currentProcessor) {
                                    pCommunication += Math.Pow(CommGraph.GetCommunicationCost(dependencyTask, currentTask), 2);
                                    int dependencyCost = processorsSchedullingTimeForTask[dependencyTask] + CommGraph.GetCommunicationCost(dependencyTask, currentTask);
                                    if (dependencyCost > currentAllocationCost)
                                        currentAllocationCost = dependencyCost;
                                }
                            }
                            currentAllocationCost += CommGraph.GetEdgeCost(currentTask);
                            schedulingSolution.ProcessorStatus[currentProcessor] = currentAllocationCost;
                            processorsSchedullingTimeForTask[currentTask] = currentAllocationCost;
                            pTask += CommGraph.GetEdgeCost(currentTask);
                            scheduledTasks[currentTask] = true;
                            tasksGroupedByProcessor[currentProcessor].RemoveAt(0);
                            remainingTasks--;
                            currentProcessor = -1;
                        }
                    }
                }
                if (remainingTasks != 0) {
                    deadLockOcurred = true;

                    // Tratamento de DeadLock
                    int chosenSourceProcessor;
                    do {
                        chosenSourceProcessor = Aleatoriety.GetRandomInt(ProcessorCount);
                    } while (tasksGroupedByProcessor[chosenSourceProcessor].Count == 0);
                    int chosenDestProcessor;
                    do {
                        chosenDestProcessor = Aleatoriety.GetRandomInt(ProcessorCount);
                    } while (chosenSourceProcessor == chosenDestProcessor);
                    int taskToBeTransfered = tasksGroupedByProcessor[chosenSourceProcessor].First().Task;
                    int idx = 0;
                    while (schedulingSolution.GeneticMaterial[0, idx] != taskToBeTransfered)
                        ++idx;
                    schedulingSolution.GeneticMaterial[1, idx] = chosenDestProcessor;
                    ValidateIndividual(schedulingSolution);
                    goto REDO;
                }
                else
                    deadLockOcurred = false;
            } while (deadLockOcurred);
            // Houve DeadLock

            schedulingSolution.MakeSpan = schedulingSolution.ProcessorStatus.Max();
            schedulingSolution.SpentPower = (pTask * k1) + (pCommunication * k2);
        }
 public override void Execute(PopulationBase population, out IndividualBase chosenIndividual1, out IndividualBase chosenIndividual2)
 {
     throw new NotImplementedException();
 }
 public override string SerializeIndividual(IndividualBase individual)
 {
     StringBuilder SB = new StringBuilder();
     SB.AppendLine("Individual:");
     SB.AppendLine("\t" + "Value: " + individual.GetValueForObjective(MonoObjectiveGoal));
     CryptArithmeticSolution cryptoSolution = (individual as CryptArithmeticSolution);
     int charValue = -1;
     for (int idx = 0; idx < charArray.Length; ++idx) {
         charValue = cryptoSolution.LettersValues[idx];
         SB.AppendLine("\t" + charArray[idx] + ": " + charValue);
     }
     return SB.ToString();
 }
 public override void ValidateIndividual(IndividualBase individual)
 {
 }
 public override void CiclicCrossover(IndividualBase parent1, IndividualBase parent2, out IndividualBase child1, out IndividualBase child2)
 {
     throw new NotImplementedException();
 }
Esempio n. 39
0
 public override void Execute(IndividualBase parent1, IndividualBase parent2, out IndividualBase child1, out IndividualBase child2)
 {
     Problem.CiclicCrossover(parent1, parent2, out child1, out child2);
 }
 public abstract void Execute(IndividualBase parent1, IndividualBase parent2, out IndividualBase child1, out IndividualBase child2);
 public abstract void Execute(PopulationBase population, out IndividualBase chosenIndividual1, out IndividualBase chosenIndividual2);
        public override void MutateIndividual(IndividualBase individual)
        {
            CryptArithmeticSolution cryptoSolution = (individual as CryptArithmeticSolution);
            int amountOfChars = charArray.Count();
            int firstPositionIdx = Aleatoriety.GetRandomInt(amountOfChars);
            int secondPositionIdx;
            do {
                secondPositionIdx = Aleatoriety.GetRandomInt(amountOfChars);
            } while (secondPositionIdx == firstPositionIdx);

            int tempValue = cryptoSolution.LettersValues[secondPositionIdx];
            cryptoSolution.LettersValues[secondPositionIdx] = cryptoSolution.LettersValues[firstPositionIdx];
            cryptoSolution.LettersValues[firstPositionIdx] = tempValue;
            individual = cryptoSolution;
        }