Esempio n. 1
0
        public void TestReadSpectralIndices()
        {
            var testSpectra = PathHelper.ResolveAssetPath("20160725_203006_continuous1__Towsey.Acoustic.ACI.csv");

            var dir = PathHelper.TestResources.ToDirectoryEntry();

            var matrix = IndexMatrices.ReadSpectralIndices(
                dir,
                "20160725_203006_continuous1",
                "Towsey.Acoustic",
                new[] { "ACI" })
                         .Single()
                         .Value;

            Assert.AreEqual(256, matrix.GetLength(0));
            Assert.AreEqual(30, matrix.GetLength(1));

            Assert.AreEqual(0.462924678189025, matrix[255, 0]);
            Assert.AreEqual(0.42779069684277, matrix[254, 0]);
            Assert.AreEqual(0.46412042529103, matrix[255, 1]);
            Assert.AreEqual(0.444650614488611, matrix[254, 1]);

            var matrix2 = IndexMatrices.ReadSpectrogram(testSpectra.ToFileInfo(), out var binCount);

            matrix2 = MatrixTools.MatrixRotate90Anticlockwise(matrix2);

            var actualEnumerator = matrix2.GetEnumerator();

            foreach (var expected in matrix)
            {
                actualEnumerator.MoveNext();

                Assert.AreEqual(expected, (double)actualEnumerator.Current, 1E-14, $"delta: {expected - (double)actualEnumerator.Current}");
            }
        }
Esempio n. 2
0
        public void TestReadSpectrogram()
        {
            var testSpectra = PathHelper.ResolveAssetPath("20160725_203006_continuous1__Towsey.Acoustic.ACI.csv");

            var matrix = IndexMatrices.ReadSpectrogram(testSpectra.ToFileInfo(), out var binCount);

            Assert.AreEqual(30, matrix.GetLength(0));
            Assert.AreEqual(256, matrix.GetLength(1));
            Assert.AreEqual(256, binCount);

            Assert.AreEqual(0.462924678189025, matrix[0, 0]);
            Assert.AreEqual(0.42779069684277, matrix[0, 1]);
            Assert.AreEqual(0.46412042529103, matrix[1, 0]);
            Assert.AreEqual(0.444650614488611, matrix[1, 1]);
        }
Esempio n. 3
0
        public void TestWriteReadSpectrogram()
        {
            var random      = TestHelpers.Random.GetRandom();
            var testSpectra = random.NextMatrix(100, 50);

            var testFile = this.outputDirectory.CombineFile("test.matrix.csv");

            Csv.WriteMatrixToCsv(testFile, testSpectra);

            var matrix = IndexMatrices.ReadSpectrogram(testFile, out var binCount);

            Assert.AreEqual(100, matrix.GetLength(0));
            Assert.AreEqual(50, matrix.GetLength(1));
            Assert.AreEqual(50, binCount);

            var actualEnumerator = matrix.GetEnumerator();

            foreach (var expected in testSpectra)
            {
                actualEnumerator.MoveNext();

                Assert.AreEqual(expected, (double)actualEnumerator.Current, 1E-14, $"delta: {expected - (double)actualEnumerator.Current}");
            }
        }
Esempio n. 4
0
        } //Execute()

        public static Output GetInstanceRepresentations(Arguments arguments)
        {
            LoggedConsole.WriteLine("1. Read in all Instances and do feature extraction");

            //################################### FEATURE WEIGHTS
            //TRY DIFFERENT WEIGHTINGS assuming following "SPT,RHZ,RVT,RPS,RNG";
            bool doDeltaFeatures = false;

            double[] weights      = { 1.0, 1.0, 0.8, 0.7, 0.7 };
            double[] deltaWeights = { 1.0, 1.0, 0.8, 0.7, 0.7, 0.5, 0.4, 0.4, 0.2, 0.2 };
            if (doDeltaFeatures)
            {
                weights = deltaWeights;
            }

            //MAX-POOLING for SPECTRAL REDUCTION
            // frequency bins used to reduce dimensionality of the 256 spectral values.
            int startBin  = 8;
            int maxOf2Bin = 117;
            int maxOf3Bin = 160;
            int endBin    = 200;

            double[] testArray = new double[256];
            for (int i = 0; i < testArray.Length; i++)
            {
                testArray[i] = i;
            }

            double[] reducedArray          = MaxPoolingLimited(testArray, startBin, maxOf2Bin, maxOf3Bin, endBin);
            int      reducedSpectralLength = reducedArray.Length;

            LoggedConsole.WriteLine("     Reduced spectral length = " + reducedSpectralLength);
            int instanceCount = arguments.InstanceCount;
            int speciesCount  = arguments.SpeciesCount;

            // READ IN THE SPECIES LABELS FILE AND SET UP THE DATA
            string[] fileID    = new string[instanceCount];
            int[]    speciesID = new int[speciesCount];
            ReadGlotinsSpeciesLabelFile(arguments.SpeciesLabelsFile, instanceCount, out fileID, out speciesID);

            // INIT array of species counts
            int[] instanceNumbersPerSpecies = new int[speciesCount];

            // INIT array of frame counts
            int[] frameNumbersPerInstance = new int[instanceCount];

            // initialise species description matrix
            var keyArray = FEATURE_KEYS.Split(',');

            int totalFeatureCount = keyArray.Length * reducedArray.Length;

            Console.WriteLine("    Total Feature Count = " + totalFeatureCount);

            if (doDeltaFeatures)
            {
                totalFeatureCount *= 2;
                LoggedConsole.WriteLine("    Total Delta Feature Count = " + totalFeatureCount);
            }

            // one matrix row per species
            double[,] instanceFeatureMatrix = new double[instanceCount, totalFeatureCount];

            // loop through all all instances
            for (int j = 0; j < instanceCount; j++)
            {
                LoggedConsole.Write(".");
                int frameCount = 0;

                // get the spectral index files
                int speciesLabel = speciesID[j];

                // dictionary to store feature spectra for instance.
                var aggreDictionary = new Dictionary <string, double[]>();

                // dictionary to store delta spectra for instance.
                var deltaDictionary = new Dictionary <string, double[]>();

                foreach (string key in keyArray)
                {
                    string   name = string.Format("{0}_Species{1:d2}.{2}.csv", fileID[j], speciesLabel, key);
                    FileInfo file = new FileInfo(Path.Combine(arguments.InputDataDirectory.FullName, name));

                    if (file.Exists)
                    {
                        int binCount;
                        double[,] matrix = IndexMatrices.ReadSpectrogram(file, out binCount);

                        // create or get the array of spectral values.
                        double[] aggregateArray = new double[reducedSpectralLength];
                        double[] deltaArray     = new double[reducedSpectralLength];

                        double[] ipVector = MatrixTools.GetRow(matrix, 0);
                        ipVector     = DataTools.SubtractValueAndTruncateToZero(ipVector, arguments.BgnThreshold);
                        reducedArray = MaxPoolingLimited(ipVector, startBin, maxOf2Bin, maxOf3Bin, endBin);
                        double[] previousArray = reducedArray;

                        // transfer spectral values to array.
                        int rowCount = matrix.GetLength(0);

                        //rowCount = (int)Math.Round(rowCount * 0.99); // ###################### USE ONLY 99% of instance
                        //if (rowCount > 1200) rowCount = 1200;
                        for (int r = 1; r < rowCount; r++)
                        {
                            ipVector     = MatrixTools.GetRow(matrix, r);
                            ipVector     = DataTools.SubtractValueAndTruncateToZero(ipVector, arguments.BgnThreshold);
                            reducedArray = MaxPoolingLimited(ipVector, startBin, maxOf2Bin, maxOf3Bin, endBin);

                            for (int c = 0; c < reducedSpectralLength; c++)
                            {
                                aggregateArray[c] += reducedArray[c];

                                // Calculate the DELTA values TWO OPTIONS ##################################################
                                double delta = Math.Abs(reducedArray[c] - previousArray[c]);

                                //double delta = reducedArray[c] - previousArray[c];
                                //if (delta < 0.0)  delta = 0.0;
                                //double delta = previousArray[c]; //previous array - i.e. do not calculate delta
                                deltaArray[c] += delta;
                            }

                            previousArray = reducedArray;
                        }

                        aggreDictionary[key] = aggregateArray;
                        deltaDictionary[key] = deltaArray;
                        frameCount           = rowCount;
                    } //if (file.Exists)
                }     //foreach (string key in keyArray)

                instanceNumbersPerSpecies[speciesLabel - 1]++;
                frameNumbersPerInstance[j] += frameCount;

                // create the matrix of instance descriptions which consists of concatenated vectors
                // j = index of instance ID = row number
                int featureID = 0;
                foreach (string key in keyArray)
                {
                    int featureOffset = featureID * reducedSpectralLength;
                    for (int c = 0; c < reducedSpectralLength; c++)
                    {
                        // TWO OPTIONS: SUM OR AVERAGE ######################################
                        //instanceFeatureMatrix[j, featureOffset + c] = dictionary[key][c];
                        instanceFeatureMatrix[j, featureOffset + c] = aggreDictionary[key][c] / frameCount;
                    }

                    featureID++;
                }

                if (doDeltaFeatures)
                {
                    foreach (string key in keyArray)
                    {
                        int featureOffset = featureID * reducedSpectralLength;
                        for (int c = 0; c < reducedSpectralLength; c++)
                        {
                            // TWO OPTIONS: SUM OR AVERAGE ######################################
                            //instanceFeatureMatrix[j, featureOffset + c] = dictionary[key][c];
                            instanceFeatureMatrix[j, featureOffset + c] = deltaDictionary[key][c] / frameCount;
                        }

                        featureID++;
                    }
                } // if doDeltaFeatures
            }     // end for loop j over all instances

            LoggedConsole.WriteLine("Done!");

            LoggedConsole.WriteLine("\nSum of species number array = " + instanceNumbersPerSpecies.Sum());
            LoggedConsole.WriteLine("Sum of  frame  number array = " + frameNumbersPerInstance.Sum());
            bool   addLineNumbers            = true;
            string countsArrayOutputFilePath = Path.Combine(arguments.OutputDirectory.FullName, "BirdClef50_training_Counts.txt");

            FileTools.WriteArray2File(instanceNumbersPerSpecies, addLineNumbers, countsArrayOutputFilePath);

            // Initialise output data arrays
            Output output = new Output();

            output.FileID    = fileID;
            output.SpeciesID = speciesID;
            output.InstanceNumbersPerSpecies = instanceNumbersPerSpecies;
            output.ReducedSpectralLength     = reducedSpectralLength;

            // INIT array of frame counts
            output.FrameNumbersPerInstance = frameNumbersPerInstance;

            // matrix: each row= one instance;  each column = one feature
            output.InstanceFeatureMatrix = instanceFeatureMatrix;

            output.Weights = weights;

            return(output);
        } // GetInstanceRepresentations()