Esempio n. 1
0
        public override IImage <double> CloneSize(int newWidth, int newHeight)
        {
            IRegularGrid2D gridClone = grid.CloneSize(newWidth, newHeight);
            GridImage      clone     = new GridImage(gridClone);

            return(clone);
        }
Esempio n. 2
0
        /// <summary>
        /// Compute the Root Mean Square difference betweeen two grids of the same dimensions.
        /// Nodes which are null in either grid will be ignored.
        /// </summary>
        /// <param name="otherGrid">The grid against which this grid will be compared.</param>
        /// <param name="beginI">The minimumI</param>
        /// <param name="endI">One beyond the maximumI (half-open range)</param>
        /// <param name="beginJ">The minimumJ</param>
        /// <param name="endJ">One beyond the maximumJ (half-open range)</param>
        /// <returns>The Root Mean Square difference of the z values.</returns>
        public double?RmsDifference(IRegularGrid2D otherGrid, int beginI, int endI, int beginJ, int endJ)
        {
            Debug.Assert(this.SizeI == otherGrid.SizeI);
            Debug.Assert(this.SizeJ == otherGrid.SizeJ);
            Debug.Assert(beginI >= 0 && beginI < SizeI);
            Debug.Assert(beginJ >= 0 && beginJ < SizeJ);
            Debug.Assert(endI > 0 && endI <= SizeI);
            Debug.Assert(endJ > 0 && endJ <= SizeJ);
            double total = 0.0;
            int    count = 0;

            for (int i = beginI; i < endI; ++i)
            {
                for (int j = beginJ; j < endJ; ++j)
                {
                    if (this[i, j].HasValue && otherGrid[i, j].HasValue)
                    {
                        double diff = this[i, j].Value - otherGrid[i, j].Value;
                        Debug.Assert(!double.IsNaN(diff));
                        Debug.Assert(!double.IsInfinity(diff));
                        total += diff * diff;
                        ++count;
                    }
                }
            }
            if (count == 0)
            {
                return(null);
            }
            double mean = total / count;

            return(Math.Sqrt(mean));
        }
Esempio n. 3
0
        public Histogram CreateDipAzimuthHistogram(int numberOfClasses)
        {
            Histogram histogram = new Histogram(numberOfClasses, -Math.PI, +Math.PI);

            IRegularGrid2D dZdX = CreatePartialDerivativeIGrid();
            IRegularGrid2D dZdY = CreatePartialDerivativeJGrid();

            for (int i = 0; i < SizeI; ++i)
            {
                for (int j = 0; j < SizeJ; ++j)
                {
                    double?x = dZdX[i, j];
                    double?y = dZdY[i, j];
                    if (x.HasValue && y.HasValue)
                    {
                        if (x != 0.0 && y != 0.0)
                        {
                            double dipAzimuth = Math.Atan2(-y.Value, -x.Value); // Negate x and y to give down-dip rather than up-dip
                            histogram.Accumulate(dipAzimuth);
                        }
                    }
                }
            }
            return(histogram);
        }
Esempio n. 4
0
        public override IImage <double> CloneSize()
        {
            IRegularGrid2D gridClone = grid.CloneSize();
            GridImage      clone     = new GridImage(gridClone);

            return(clone);
        }
Esempio n. 5
0
        public override object Clone()
        {
            IRegularGrid2D gridClone = (IRegularGrid2D)this.grid.Clone();
            GridImage      clone     = new GridImage(gridClone);

            return(clone);
        }
Esempio n. 6
0
        public Grid2DPhenotype(Grid2DDomain domain) :
            base(domain)
        {
            Point2D  origin   = domain.Min;
            Vector2D diagonal = domain.Max - domain.Min;
            Vector2D spacing  = new Vector2D(diagonal.DeltaX / domain.SizeI, diagonal.DeltaY / domain.SizeJ);

            this.grid = new RegularGrid2D(origin, spacing, domain.SizeI, domain.SizeJ, 0.0);
        }
Esempio n. 7
0
 public Grid2DDomain(IRegularGrid2D grid) :
     base(new Grid2DPhenotype(grid))
 {
     Target.Domain = this;
     Min           = new Point2D(grid.MinX, grid.MinY);
     Max           = new Point2D(grid.MaxX, grid.MaxY);
     this.sizeI    = grid.SizeI;
     this.sizeJ    = grid.SizeJ;
 }
Esempio n. 8
0
        private static void WriteBinaryImageSurfer6Grid(IRegularGrid2D prototypeGrid, IImage <bool> image, string uri)
        {
            IRegularGrid2D thresholdGrid = prototypeGrid.CloneSize(image.Width, image.Height);

            for (int i = 0; i < image.Width; ++i)
            {
                for (int j = 0; j < image.Height; ++j)
                {
                    thresholdGrid[i, j] = image[i, j] ? 1.0 : 0.0;
                }
            }
            thresholdGrid.WriteSurfer6BinaryFile(uri);
        }
Esempio n. 9
0
        // usage : Training: C:\Users\rjs\Documents\dev\p4workspace\sandbox\geodyssey\proto\Athena\testdata\training.irap
        //         Expected: C:\Users\rjs\Documents\dev\p4workspace\sandbox\geodyssey\proto\Athena\testdata\expected.grd
        //         Grid for analysis: F:\sapere_aude\data\IrapClassic\grid_surface\ASCII\RMS\analysis.irap
        static int Main(string[] args)
        {
            // Get a URI from the command line argument
            Uri trainingInputUri    = UriFromArg(args, 0);
            Uri trainingExpectedUri = UriFromArg(args, 1);
            Uri analysisUri         = UriFromArg(args, 2);

            GeodysseyModel model = new GeodysseyModel();

            LoaderController.Instance.Open(trainingInputUri, model);
            IRegularGrid2D trainingInputGrid = model[0]; // The first grid

            LoaderController.Instance.Open(trainingExpectedUri, model);
            IRegularGrid2D trainingExpectedGrid = model[1]; // The second grid

            LoaderController.Instance.Open(analysisUri, model);
            IRegularGrid2D analysisGrid = model[2]; // The third grid

            // Replaces blanks with 0.0
            for (int j = 0; j < trainingExpectedGrid.SizeJ; ++j)
            {
                for (int i = 0; i < trainingExpectedGrid.SizeI; ++i)
                {
                    if (!trainingExpectedGrid[i, j].HasValue)
                    {
                        trainingExpectedGrid[i, j] = 0.0;
                    }
                    else
                    {
                        if (trainingExpectedGrid[i, j] < 0.0)
                        {
                            trainingExpectedGrid[i, j] = 0.0;
                        }
                        else if (trainingExpectedGrid[i, j] > 1.0)
                        {
                            trainingExpectedGrid[i, j] = 1.0;
                        }
                    }
                }
            }

            int matrixWidth = 5;
            FaultInHorizonClassifer classifier = new FaultInHorizonClassifer(matrixWidth);

            classifier.Learn(trainingInputGrid, trainingExpectedGrid);
            IRegularGrid2D predictedGrid = classifier.CreateFaultProbability(analysisGrid);

            predictedGrid.WriteSurfer6BinaryFile("predicted.grd");
            return(0);
        }
Esempio n. 10
0
        public double RandomHistogramDipAzimuth()
        {
            if (dipAzimuthHistogramGenerator == null)
            {
                Grid2DPhenotype p = (Grid2DPhenotype)Target;
                IRegularGrid2D  g = p.Grid;
                Histogram       dipAzimuthHistogram = g.CreateDipAzimuthHistogram(24);
                dipAzimuthHistogramGenerator = new ContinuousHistogramGenerator(dipAzimuthHistogram);
            }
            double value = dipAzimuthHistogramGenerator.NextDouble();

            //Console.WriteLine("randomAzimuth = {0}", Angle.RadiansToDegrees(value));
            return(value);
        }
Esempio n. 11
0
 public void MaskFrom(IRegularGrid2D maskGrid)
 {
     Debug.Assert(this.SizeI == maskGrid.SizeI);
     Debug.Assert(this.SizeJ == maskGrid.SizeJ);
     for (int i = 0; i < SizeI; ++i)
     {
         for (int j = 0; j < SizeJ; ++j)
         {
             if (!maskGrid[i, j].HasValue)
             {
                 this[i, j] = null;
             }
         }
     }
 }
Esempio n. 12
0
        public IRegularGrid2D CreateFaultProbability(IRegularGrid2D horizon)
        {
            // TODO: This is a little hacky and wasteful - replace this
            // with a Transform method on the Grid class
            IRegularGrid2D probabilityGrid = (IRegularGrid2D)horizon.Clone();

            for (int j = 0; j < horizon.SizeJ; ++j)
            {
                for (int i = 0; i < horizon.SizeI; ++i)
                {
                    double[] matrix     = MatrixInput(horizon, i, j, false);
                    double   prediction = network.Run(matrix)[0]; // TODO : Assumes only one result
                    probabilityGrid[i, j] = prediction;
                }
            }
            return(probabilityGrid);
        }
Esempio n. 13
0
        /// <summary>
        /// Compute a normalized correspondence value between two grids of the same dimensions.
        /// </summary>
        /// <param name="otherGrid">The grid against which this grid will be compared.</param>
        /// <returns>
        /// A number between 0.0 and 1.0 indicating the proportion of corresponding
        /// grid nodes which either both contain a value, or both contain a null.
        /// </returns>
        public double Correspondence(IRegularGrid2D otherGrid)
        {
            Debug.Assert(this.SizeI == otherGrid.SizeI);
            Debug.Assert(this.SizeJ == otherGrid.SizeJ);
            int correspondence = 0;

            for (int i = 0; i < SizeI; ++i)
            {
                for (int j = 0; j < SizeJ; ++j)
                {
                    if (this[i, j].HasValue == otherGrid[i, j].HasValue)
                    {
                        correspondence += 1;
                    }
                }
            }
            return((double)correspondence / (double)zs.Length);
        }
Esempio n. 14
0
        private static void RecordBest(IRegularGrid2D targetGrid, Population population, int generation, RectangularDomain domain)
        {
            List <Individual> best = population.Best;

            for (int j = 0; j < best.Count; ++j)
            {
                Console.Write("best[{0}] = [", j);
                foreach (double f in best[j].Fitness)
                {
                    Console.Write(f);
                    Console.Write(" ");
                }
                Console.WriteLine("] with {0} genes", best[j].Genome.Count);

                // Express the genome to create a grid
                Individual      bestIndividual = (Individual)best[j].Clone();
                Grid2DPhenotype bestPhenotype  = (Grid2DPhenotype)bestIndividual.Phenome;
                bestPhenotype.Grid.MaskFrom(targetGrid);
                StringBuilder gridFileName = new StringBuilder();
                gridFileName.AppendFormat("evolved_{0}_{1}.grd", generation + 1, j);
                bestPhenotype.Grid.WriteSurfer6BinaryFile(gridFileName.ToString());
                ReportLogger.Instance.Writer.WriteStartElement("Grid");
                ReportLogger.Instance.Writer.WriteStartAttribute("file");
                ReportLogger.Instance.Writer.WriteValue(gridFileName.ToString());
                ReportLogger.Instance.Writer.WriteEndAttribute();
                ReportLogger.Instance.Writer.WriteEndElement();

                // Express the genome to create a fault polygon map
                OutlineMapDomain    mapDomain       = new OutlineMapDomain(domain);
                OutlineMapPhenotype mapPhenotype    = (OutlineMapPhenotype)bestIndividual.Genome.Express(mapDomain);
                StringBuilder       polygonFileName = new StringBuilder();
                polygonFileName.AppendFormat("evolved_{0}_{1}.poly", generation + 1, j);
                using (StreamWriter writer = File.CreateText(polygonFileName.ToString()))
                {
                    writer.Write(mapPhenotype.ToString());
                }
                ReportLogger.Instance.Writer.WriteStartElement("Polygons");
                ReportLogger.Instance.Writer.WriteStartAttribute("file");
                ReportLogger.Instance.Writer.WriteValue(polygonFileName.ToString());
                ReportLogger.Instance.Writer.WriteEndAttribute();
                ReportLogger.Instance.Writer.WriteEndElement();
            }
        }
Esempio n. 15
0
        public void Learn(IRegularGrid2D input, IRegularGrid2D expected)
        {
            // Build the training samples
            for (int j = 0; j < input.SizeJ; ++j)
            {
                for (int i = 0; i < input.SizeI; ++i)
                {
                    double[] inValues       = MatrixInput(input, i, j, true);
                    double[] expectedValues = TrainingExpected(expected, i, j);
                    network.TrainingSamples.Add(new TrainingSample(inValues, expectedValues));
                }
            }
            network.Learn();
            network.Save("athena.net");

            //double[] validate1 = network.Run(new double[] {  0.013, -0.026, -0.060,  0.043, 0.0, -0.037,  0.013, -0.026, -0.060 }); // 0.0
            //double[] validate2 = network.Run(new double[] {  0.134,  0.050, -0.004, 0.078,  0.0, -0.034,  0.031, -0.044, -0.062 }); // 0.49
            //double[] validate3 = network.Run(new double[] { -0.060,  0.071,  0.246, -0.170, 0.0,  0.296, -0.277,  0.327,  0.943 }); // 0.94
        }
Esempio n. 16
0
        /// <summary>
        /// Returns the array of normalised training values for the
        /// specified grid node, or null if the specified grid node
        /// has no value.
        /// </summary>
        /// <param name="i"></param>
        /// <param name="j"></param>
        /// <returns>Either an array of numInputNodes doubles, or null.</returns>
        private double[] MatrixInput(IRegularGrid2D grid, int i, int j, bool deBias)
        {
            Debug.Assert(grid != null);
            if (!grid[i, j].HasValue)
            {
                return(null);
            }
            double zCentre = grid[i, j].Value;
            int    centre  = (matrixWidth - 1) / 2;

            // Must return a 1D array, since that's what training sample requires
            double[] matrix = new double[matrixWidth * matrixWidth];
            for (int q = 0; q < matrixWidth; ++q)
            {
                for (int p = 0; p < matrixWidth; ++p)
                {
                    int relativeI = p - centre;
                    int relativeJ = q - centre;
                    int absoluteI = i + relativeI;
                    int absoluteJ = j + relativeJ;
                    int index     = q * matrixWidth + p;

                    double?z = PaddedGridValue(grid, absoluteI, absoluteJ);
                    Debug.Assert(z.HasValue);
                    // TODO: Assumes square cells
                    double zDiff = z.Value - zCentre;
                    double zNorm = zDiff / grid.Spacing.DeltaX;
                    matrix[index] = zNorm;
                }
            }
            if (deBias)
            {
                DeBiasMatrix(matrix, centre, matrixWidth);
            }

            return(matrix);
        }
Esempio n. 17
0
        /// <summary>
        /// Returns the value for the specified grid cell, padding data off the image
        /// boundaries to allow matrix sampling to work right up to the image edges.
        /// This version reflects the data at the image boundaries.
        /// </summary>
        /// <param name="grid">The grid</param>
        /// <param name="absoluteI">The column coordinate</param>
        /// <param name="absoluteJ">The row coodinate</param>
        /// <returns>Either a real grid value, for in-range i and j, or an interpolated value</returns>
        private double?PaddedGridValue(IRegularGrid2D grid, int absoluteI, int absoluteJ)
        {
            // Modify i co-ordinate if necessary
            if (absoluteI < 0)
            {
                absoluteI = 0 - absoluteI;
            }
            else if (absoluteI > grid.SizeI - 1)
            {
                absoluteI = 2 * (grid.SizeI - 1) - absoluteI;
            }

            // Modify j co-ordinate if necessary
            if (absoluteJ < 0)
            {
                absoluteJ = 0 - absoluteJ;
            }
            else if (absoluteJ > grid.SizeJ - 1)
            {
                absoluteJ = 2 * (grid.SizeJ - 1) - absoluteJ;
            }

            return(grid[absoluteI, absoluteJ]);
        }
Esempio n. 18
0
 private double[] TrainingExpected(IRegularGrid2D grid, int i, int j)
 {
     Debug.Assert(grid[i, j].HasValue);
     return(new double[] { grid[i, j].Value });
 }
Esempio n. 19
0
        static void Main(string[] args)
        {
            Uri            faultProbabilityUri = UriFromArg(args, 0);
            Uri            horizonUri          = UriFromArg(args, 1);
            GeodysseyModel model = new GeodysseyModel();

            LoaderController.Instance.Open(faultProbabilityUri, model);
            IRegularGrid2D pFaultGrid = model[0]; // The first grid

            LoaderController.Instance.Open(horizonUri, model);
            IRegularGrid2D horizon = model[1];    // Horizon grid

            GridImage pFaultImage = new GridImage(pFaultGrid);

            GridImage pFaultImageX = (GridImage)pFaultImage.Clone();

            pFaultImageX.Clear();

            GridImage pFaultImageY = (GridImage)pFaultImage.Clone();

            pFaultImageY.Clear();

            Convolver.GaussianGradient(pFaultImage, pFaultImageX, pFaultImageY, 1.0);

            GridImage pFaultImageXX = (GridImage)pFaultImage.Clone();

            pFaultImageXX.Clear();

            GridImage pFaultImageYY = (GridImage)pFaultImage.Clone();

            pFaultImageYY.Clear();

            GridImage pFaultImageXY = (GridImage)pFaultImage.Clone();

            pFaultImageXY.Clear();


            Convolver.HessianMatrixOfGaussian(pFaultImage, pFaultImageXX, pFaultImageYY, pFaultImageXY, 1.0);

            //GridImage pFaultImageBeta = (GridImage) RidgeDetector.PrincipleCurvatureDirection(pFaultImageXX, pFaultImageYY, pFaultImageXY);

            //GridImage pFaultImagePQ = (GridImage) RidgeDetector.LocalLpq(pFaultImageXX, pFaultImageYY, pFaultImageXY, pFaultImageBeta);

            //GridImage pFaultImageP = (GridImage) RidgeDetector.LocalLp(pFaultImageX, pFaultImageY, pFaultImageBeta);
            //GridImage pFaultImageQ = (GridImage) RidgeDetector.LocalLq(pFaultImageX, pFaultImageY, pFaultImageBeta);
            //GridImage pFaultImagePP = (GridImage) RidgeDetector.LocalLpp(pFaultImageXX, pFaultImageYY, pFaultImageXY, pFaultImageBeta);
            //GridImage pFaultImageQQ = (GridImage) RidgeDetector.LocalLqq(pFaultImageXX, pFaultImageYY, pFaultImageXY, pFaultImageBeta);

            Trace.WriteLine("Ridge detector");
            GridImage pFaultImageRidge = (GridImage)RidgeDetector.Detect(pFaultImageX, pFaultImageY, pFaultImageXX, pFaultImageYY, pFaultImageXY);

            IImage <bool> ridge = pFaultImageRidge.CreateBinaryImage(0.0);

            Trace.WriteLine("Pepper filter");
            IImage <bool> filtered = Morphology.PepperFiltering(5, ridge);

            Trace.WriteLine("Closing gaps");
            IImage <bool> closed = Morphology.Closing(filtered);

            Trace.WriteLine("Thinning until convergence");
            IImage <bool> thinned = Morphology.ThinUntilConvergence(closed);

            Trace.WriteLine("Thinning blocks until convergence");
            IImage <bool> blockthinned = Morphology.ThinBlockUntilConvergence(thinned);

            Trace.WriteLine("Filling");
            IImage <bool> filled = Morphology.Fill(blockthinned);

            Trace.WriteLine("Connectivity");
            IImage <int> connectivity = BitImage.Analysis.Connectivity(filled);

            Trace.WriteLine("Connected components");
            IImage <int> components = BitImage.Analysis.ConnectedComponents(filled);

            Trace.WriteLine("Mapping faults");
            FaultNetwork network = FaultNetworkMapper.MapFaultNetwork(filled, horizon);

            Trace.WriteLine("Mapping displacements");
            FaultDisplacementMapper displacementMapper = new FaultDisplacementMapper(network);

            var mesh = displacementMapper.GetResult();

            // Output files of mesh
            Trace.WriteLine("Writing faults");
            string faultSegmentsPath = faultProbabilityUri.LocalPath.Replace(".grd", "_faults.poly");
            string monoSegmentsPath  = faultProbabilityUri.LocalPath.Replace(".grd", "_mono.poly");

            using (StreamWriter faultFile = new StreamWriter(faultSegmentsPath))
                using (StreamWriter monoFile = new StreamWriter(monoSegmentsPath))
                {
                    foreach (EdgeBase edge in mesh.Edges)
                    {
                        StreamWriter file   = edge is FaultEdge ? faultFile : monoFile;
                        Point2D      source = ((PositionedVertexBase)edge.Source).Position;
                        Point2D      target = ((PositionedVertexBase)edge.Target).Position;
                        file.WriteLine("{0}\t{1}", source.X, source.Y);
                        file.WriteLine("{0}\t{1}", target.X, target.Y);
                        file.WriteLine("%");
                    }
                }

            // Establish order in the mesh
            Trace.WriteLine("Build planar subdivision - Ordering mesh and inserting faces");
            var orderer     = new Orderer2D <PositionedVertexBase, EdgeBase, FaceBase>(mesh);
            var orderedMesh = orderer.GetResult();

            Debug.Assert(orderedMesh.Euler == 2);

            // Triangulate the mesh
            // Copy the list of monotone faces, so we can iterate over it it
            // whilst modifying the faces in the mesh during triangulation.
            Trace.WriteLine("Triangulating");
            List <FaceBase> faces = new List <FaceBase>(orderedMesh.Faces);

            foreach (FaceBase face in faces)
            {
                var triangulator = new MonotonePolygonTriangulator <PositionedVertexBase, EdgeBase, FaceBase>(orderedMesh, face);
                triangulator.GetResult();
            }

            // Improve triangulation quality
            var improver = new TriangulationQualityImprover <PositionedVertexBase, EdgeBase, FaceBase>(mesh); // TODO: Add a flippable critera

            improver.Improve();

            Trace.WriteLine("Writing mesh");
            // Output the mesh
            Random rng       = new Random();
            string facesPath = faultProbabilityUri.LocalPath.Replace(".grd", "_faces.poly");

            using (StreamWriter facesFile = new StreamWriter(facesPath))
            {
                // All faces except the last one...
                foreach (FaceBase face in orderedMesh.Faces.Take(orderedMesh.FaceCount - 1))
                {
                    foreach (VertexBase vertex in face.Vertices)
                    {
                        PositionedVertexBase pos = (PositionedVertexBase)vertex;
                        Point2D point            = pos.Position;
                        facesFile.WriteLine("{0}\t{1}", point.X, point.Y);
                    }
                    int red   = rng.Next(255);
                    int green = rng.Next(255);
                    int blue  = rng.Next(255);
                    facesFile.WriteLine("% -W0/{0}/{1}/{2} -G{0}/{1}/{2}", red, green, blue);
                }
            }

            // Convert images to grids for convenient output

            //GridImage filteredGrid = (GridImage) pFaultImageRidge.Clone();
            //for (int i = 0; i < filteredGrid.Width; ++i)
            //{
            //    for (int j = 0; j < filteredGrid.Height; ++j)
            //    {
            //        filteredGrid[i, j] = filtered[i, j] ? 1.0 : 0.0;
            //    }
            //}

            //GridImage closedGrid = (GridImage) pFaultImageRidge.Clone();
            //for (int i = 0; i < closedGrid.Width; ++i)
            //{
            //    for (int j = 0; j < closedGrid.Height; ++j)
            //    {
            //        closedGrid[i, j] = closed[i, j] ? 1.0 : 0.0;
            //    }
            //}

            //GridImage thinnedGrid = (GridImage) pFaultImageRidge.Clone();
            //for (int i = 0; i < thinnedGrid.Width; ++i)
            //{
            //    for (int j = 0; j < thinnedGrid.Height; ++j)
            //    {
            //        thinnedGrid[i, j] = thinned[i, j] ? 1.0 : 0.0;
            //    }
            //}

            //GridImage blockThinnedGrid = (GridImage) pFaultImageRidge.Clone();
            //for (int i = 0; i < blockThinnedGrid.Width; ++i)
            //{
            //    for (int j = 0; j < blockThinnedGrid.Height; ++j)
            //    {
            //        blockThinnedGrid[i, j] = blockthinned[i, j] ? 1.0 : 0.0;
            //    }
            //}

            GridImage filledGrid = (GridImage)pFaultImageRidge.Clone();

            for (int i = 0; i < filledGrid.Width; ++i)
            {
                for (int j = 0; j < filledGrid.Height; ++j)
                {
                    filledGrid[i, j] = filled[i, j] ? 1.0 : 0.0;
                }
            }

            //GridImage connectivityGrid = (GridImage) pFaultImageRidge.Clone();
            //for (int i = 0; i < filledGrid.Width; ++i)
            //{
            //    for (int j = 0; j < filledGrid.Height; ++j)
            //    {
            //        connectivityGrid[i, j] = connectivity[i, j];
            //    }
            //}

            //GridImage componentsGrid = (GridImage) pFaultImageRidge.Clone();
            //for (int i = 0; i < componentsGrid.Width; ++i)
            //{
            //    for (int j = 0; j < componentsGrid.Height; ++j)
            //    {
            //        componentsGrid[i, j] = components[i, j];
            //    }
            //}

            //string pathX = faultProbabilityUri.LocalPath.Replace(".", "_x.");
            //string pathY = faultProbabilityUri.LocalPath.Replace(".", "_y.");
            //string pathXX = faultProbabilityUri.LocalPath.Replace(".", "_xx.");
            //string pathYX = faultProbabilityUri.LocalPath.Replace(".", "_yy.");
            //string pathXY = faultProbabilityUri.LocalPath.Replace(".", "_xy.");
            //string pathBeta = faultProbabilityUri.LocalPath.Replace(".", "_beta.");
            //string pathPQ = faultProbabilityUri.LocalPath.Replace(".", "_pq.");
            //string pathP = faultProbabilityUri.LocalPath.Replace(".", "_p.");
            //string pathQ = faultProbabilityUri.LocalPath.Replace(".", "_q.");
            //string pathPP = faultProbabilityUri.LocalPath.Replace(".", "_pp.");
            //string pathQQ = faultProbabilityUri.LocalPath.Replace(".", "_qq.");
            //string pathRidge = faultProbabilityUri.LocalPath.Replace(".", "_ridge.");
            //string pathFiltered = faultProbabilityUri.LocalPath.Replace(".", "_filtered.");
            //string pathClosed = faultProbabilityUri.LocalPath.Replace(".", "_closed.");
            //string pathThinned = faultProbabilityUri.LocalPath.Replace(".", "_thinned.");
            //string pathBlockThinned = faultProbabilityUri.LocalPath.Replace(".", "_blockthinned.");
            string pathFilled = faultProbabilityUri.LocalPath.Replace(".", "_filled.");
            //string pathConnectivity = faultProbabilityUri.LocalPath.Replace(".", "_connectivity.");
            //string pathComponents = faultProbabilityUri.LocalPath.Replace(".", "_components.");
            //string pathFaultLines = faultProbabilityUri.LocalPath.Replace(".grd", "_faults.poly");
            string pathBisectors = faultProbabilityUri.LocalPath.Replace(".grd", "_bisectors.poly");
            string pathLabels    = faultProbabilityUri.LocalPath.Replace(".grd", "_labels.xy");
            string pathStrands   = faultProbabilityUri.LocalPath.Replace(".grd", "_strands.poly");

            //pFaultImageX.Grid.WriteSurfer6BinaryFile(pathX);
            //pFaultImageY.Grid.WriteSurfer6BinaryFile(pathY);
            //pFaultImageXX.Grid.WriteSurfer6BinaryFile(pathXX);
            //pFaultImageYY.Grid.WriteSurfer6BinaryFile(pathXY);
            //pFaultImageXY.Grid.WriteSurfer6BinaryFile(pathXY);
            //pFaultImageBeta.Grid.WriteSurfer6BinaryFile(pathBeta);
            //pFaultImagePQ.Grid.WriteSurfer6BinaryFile(pathPQ);
            //pFaultImageP.Grid.WriteSurfer6BinaryFile(pathP);
            //pFaultImageQ.Grid.WriteSurfer6BinaryFile(pathQ);
            //pFaultImagePP.Grid.WriteSurfer6BinaryFile(pathPP);
            //pFaultImageQQ.Grid.WriteSurfer6BinaryFile(pathQQ);
            //pFaultImageRidge.Grid.WriteSurfer6BinaryFile(pathRidge);
            //filteredGrid.Grid.WriteSurfer6BinaryFile(pathFiltered);
            //closedGrid.Grid.WriteSurfer6BinaryFile(pathClosed);
            //thinnedGrid.Grid.WriteSurfer6BinaryFile(pathThinned);
            //blockThinnedGrid.Grid.WriteSurfer6BinaryFile(pathBlockThinned);
            filledGrid.Grid.WriteSurfer6BinaryFile(pathFilled);
            //connectivityGrid.Grid.WriteSurfer6BinaryFile(pathConnectivity);
            //componentsGrid.Grid.WriteSurfer6BinaryFile(pathComponents);
            //mapper.OutputPolygons(pathFaultLines);
            //displacementMapper.OutputBisectors(pathBisectors);
            //displacementMapper.OutputLabels(pathLabels);
            //displacementMapper.OutputStrands(pathStrands);
        }
Esempio n. 20
0
 public void Add(IRegularGrid2D grid)
 {
     grids.Add(grid);
     //Console.WriteLine(grid.ToString());
 }
Esempio n. 21
0
 public Grid2DPhenotype(IRegularGrid2D grid) :
     base(null)
 {
     this.grid = grid;
 }
Esempio n. 22
0
 /// <summary>
 /// Construct from a grid.  The grid is not copied. The image serves as
 /// an adaptor for the grid.
 /// </summary>
 /// <param name="grid"></param>
 public GridImage(IRegularGrid2D grid)
 {
     this.grid = grid;
 }
Esempio n. 23
0
 /// <summary>
 /// Compute the Root Mean Square difference betweeen two grids of the same dimensions.
 /// Nodes which are null in either grid will be ignored.
 /// </summary>
 /// <param name="otherGrid">The grid against which this grid will be compared.</param>
 /// <returns>The Root Mean Square difference of the z values.</returns>
 public double?RmsDifference(IRegularGrid2D otherGrid)
 {
     return(RmsDifference(otherGrid, 0, SizeI, 0, SizeJ));
 }
Esempio n. 24
0
        static void Main(string[] args)
        {
            Uri            horizonUri = UriFromArg(args, 0);
            GeodysseyModel model      = new GeodysseyModel();

            LoaderController.Instance.Open(horizonUri, model);
            IRegularGrid2D horizon = model[0];

            //string pathOriginal = horizonUri.LocalPath.Replace(".dat", ".grd");
            //horizon.WriteSurfer6BinaryFile(pathOriginal);

            // TODO: Make IRegularGrid IEnumerable

            var           extentMap = new FastImage <bool>(horizon.SizeI, horizon.SizeJ, horizon.Select(item => item.HasValue));
            IImage <bool> faultMap  = Morphology.Invert(extentMap);

            IImage <double> distanceMap = DistanceMap.EuclideanTransform(extentMap);



            // Remove anything above a threshold distance from data
            const double threshold       = 50;
            var          clippedFaultMap = extentMap.CloneTransform((i, j) => distanceMap[i, j] < threshold &&
                                                                    faultMap[i, j]);

            Trace.WriteLine("Pepper filter");
            IImage <bool> filtered = Morphology.PepperFiltering(5, clippedFaultMap);

            Trace.WriteLine("Closing gaps");
            IImage <bool> closed = Morphology.Closing(filtered);

            Trace.WriteLine("Thinning until convergence");
            IImage <bool> thinned = Morphology.ThinUntilConvergence(closed);

            Trace.WriteLine("Thinning blocks until convergence");
            IImage <bool> blockthinned = Morphology.ThinBlockUntilConvergence(thinned);

            Trace.WriteLine("Filling");
            IImage <bool> filled = Morphology.Fill(blockthinned);

            WriteBinaryImageSurfer6Grid(horizon, filled, horizonUri.LocalPath.Replace(".grd", "_filled.grd"));

            //// Create a double valued 'binary' image showing the extent of the horizon data
            //FastImage<double> extentMap = new FastImage<double>(horizon.SizeI, horizon.SizeJ);
            //for (int i = 0; i < horizon.SizeI; ++i)
            //{
            //    for (int j = 0; j < horizon.SizeJ; ++j)
            //    {
            //        bool hasValue = horizon[i, j].HasValue;
            //        extentMap[i, j] = hasValue ? 1.0 : 0.0;
            //    }
            //}

            //int extent = extentMap.Where(v => v == 1.0).Count();
            //double extentProportion = (double) extent / (extentMap.Width * extentMap.Height);

            //IImage<double> scaledExtentMap = Scaler.Downscale(extentMap, 5);

            //IImage<double> smoothedExtentMap = scaledExtentMap.CloneSize();
            //Convolver.GaussianSmooth(scaledExtentMap, smoothedExtentMap, 3.0);

            //IRegularGrid2D smoothedGrid = horizon.CloneSize(smoothedExtentMap.Width, smoothedExtentMap.Height);

            //for (int i = 0 ; i < smoothedGrid.SizeI; ++i)
            //{
            //    for (int j = 0 ; j < smoothedGrid.SizeJ; ++j)
            //    {
            //        smoothedGrid[i, j] = smoothedExtentMap[i, j];
            //    }
            //}

            //PriorityQueue<double> orderedIntensities = PriorityQueue<double>.CreateHighFirstOut(smoothedExtentMap);
            //int k =  (int) (extentProportion * orderedIntensities.Count);
            //Debug.Assert(k >= 0);
            //for (int i = 0 ; i < k - 1; ++i)
            //{
            //    orderedIntensities.Dequeue();
            //}
            //double threshold = orderedIntensities.Dequeue();


            //string pathSmoothed = horizonUri.LocalPath.Replace(".grd", "_smoothed.grd");
            //smoothedGrid.WriteSurfer6BinaryFile(pathSmoothed);

            //IImage<bool> thresholdMap = BitImage.Analysis.Threshold(smoothedExtentMap, threshold * 2.0);

            //int actual = thresholdMap.Where(v => v).Count();
            //double actualProportion = (double) actual / (thresholdMap.Width * thresholdMap.Height);

            //IRegularGrid2D thresholdGrid = horizon.CloneSize(thresholdMap.Width, thresholdMap.Height);

            //for (int i = 0; i < smoothedGrid.SizeI; ++i)
            //{
            //    for (int j = 0; j < smoothedGrid.SizeJ; ++j)
            //    {
            //        thresholdGrid[i, j] = thresholdMap[i, j] ? 1.0 : 0.0;
            //    }
            //}

            //string pathThresholded = horizonUri.LocalPath.Replace(".grd", "_thresholded.grd");
            //thresholdGrid.WriteSurfer6BinaryFile(pathThresholded);

            //IImage<double> distanceMap = DistanceMap.EuclideanTransform(scaledExtentMap);



            // Convert the image back to a grid for convenient output
            IRegularGrid2D distanceGrid = horizon.CloneSize(distanceMap.Width, distanceMap.Height);

            for (int i = 0; i < distanceMap.Width; ++i)
            {
                for (int j = 0; j < distanceMap.Height; ++j)
                {
                    distanceGrid[i, j] = distanceMap[i, j];
                }
            }

            string pathDistance = horizonUri.LocalPath.Replace(".grd", "_distance.grd");

            distanceGrid.WriteSurfer6BinaryFile(pathDistance);
        }
Esempio n. 25
0
        static int Main(string[] args)
        {
            // Get a URI from the command line argument
            Uri uri;

            try
            {
                uri = new Uri(args[0]);
            }
            catch (UriFormatException)
            {
                string absPath = Directory.GetCurrentDirectory() + Path.DirectorySeparatorChar + args[0];
                try
                {
                    uri = new Uri(absPath);
                }
                catch (UriFormatException)
                {
                    return(1);
                }
            }

            ReportLogger.Instance.Create("report.xml");
            ReportLogger.Instance.Writer.WriteStartDocument();
            ReportLogger.Instance.Writer.WriteStartElement("GeodysseyRun");

            Stopwatch overallWatch = new Stopwatch();

            overallWatch.Start();
            //Console.WriteLine("Start!");
            int initialMinimumGenomeLength = 50;
            int initialMaximumGenomeLength = 100;
            int initialPopulationSize      = 1000;
            int finalPopulationSize        = 100;
            int numberOfGenerations        = 100;

            double populationPowerBase = Math.Pow((double)finalPopulationSize / (double)initialPopulationSize, 1.0 / numberOfGenerations);

            int totalNumberOfIndividuals = 0;

            // Determine how many individuals will be produced in this run
            for (int i = 0; i < numberOfGenerations; ++i)
            {
                int inc = (int)Math.Round(initialPopulationSize * Math.Pow(populationPowerBase, i + 1));
                //Console.WriteLine(inc);
                totalNumberOfIndividuals += inc;
            }
            Console.WriteLine("Total Number of Individuals = {0}", totalNumberOfIndividuals);
            Console.WriteLine("Mean Invididuals per Generation = {0}", totalNumberOfIndividuals / numberOfGenerations);

            // Load a target grid
            //RegularGrid2D targetGrid;
            //using (StreamReader reader = File.OpenText("target.grd"))
            //{
            //    targetGrid = RegularGrid2D.Create(reader);
            //}

            GeodysseyModel model = new GeodysseyModel();

            LoaderController.Instance.Open(uri, model);
            IRegularGrid2D targetGrid = model[0]; // The first grid

            Debug.Assert(targetGrid != null);
            Grid2DDomain domain = new Grid2DDomain(targetGrid);

            Stopwatch  stopWatch  = new Stopwatch();
            Population population = new Population(domain, initialPopulationSize, initialMinimumGenomeLength, initialMaximumGenomeLength);

            for (int i = 0; i < numberOfGenerations; ++i)
            {
                stopWatch.Reset();
                stopWatch.Start();
                population.ComputeFitnesses();
                stopWatch.Stop();
                TimeSpan ts = stopWatch.Elapsed;
                ReportLogger.Instance.Writer.WriteStartElement("Generation");
                ReportLogger.Instance.Writer.WriteStartAttribute("number");
                ReportLogger.Instance.Writer.WriteValue(i + 1);
                ReportLogger.Instance.Writer.WriteEndAttribute();
                ReportLogger.Instance.Writer.WriteStartAttribute("elapsedTime");
                ReportLogger.Instance.Writer.WriteValue(ts);
                ReportLogger.Instance.Writer.WriteEndAttribute();
                RecordBest(targetGrid, population, i, domain);
                population.LogSummaryStatistics();
                ReportLogger.Instance.Writer.WriteEndElement();
                Console.WriteLine("Generation {0} of {1} with size {2} in {3}) ", i + 1, numberOfGenerations, population.Count, ts);
                int nextGenerationSize = (int)Math.Round(initialPopulationSize * Math.Pow(populationPowerBase, i + 1));
                population.Evolve(nextGenerationSize);
            }
            population.ComputeFitnesses();
            RecordBest(targetGrid, population, numberOfGenerations, domain);
            Console.WriteLine("Generation {0} of {1} with size {2}) ", numberOfGenerations, numberOfGenerations, population.Count);
            overallWatch.Stop();
            Console.WriteLine("Running time : {0}", overallWatch.Elapsed);
            ReportLogger.Instance.Writer.WriteEndElement();
            ReportLogger.Instance.Writer.WriteEndDocument();
            ReportLogger.Instance.Close();
            Console.ReadKey();
            return(0);
        }