/// <summary>
        /// Attempts a calibration through <see cref="SwaptionHW1OptimizationProblem"/>
        /// using swaption matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            LambdaCalibrationSettings lsettings = (LambdaCalibrationSettings)settings;
            if (lsettings.Years > lsettings.BondMaturity)
                throw new Exception("Bond maturity has to be greater of the historical series time span.");

            InterestRateMarketData irmd = data[0] as InterestRateMarketData;
            List<object> IrmdData = new List<object>();
            IrmdData.Add(irmd);
            CapletEstimator CapEst = new CapletEstimator();
            EstimationResult er1 = CapEst.Estimate(IrmdData);

            DiscountingCurveMarketData[] dcmd = Array.ConvertAll<IMarketData, DiscountingCurveMarketData>
                ((IMarketData[])data[1], el => (DiscountingCurveMarketData)el);
            MarketPriceOfRiskCalculator mporc = new MarketPriceOfRiskCalculator();
            double lambda = mporc.Calculate(dcmd, lsettings);

            string[] names = new string[er1.Names.Length + 1];
            for (int i = 0; i < er1.Names.Length; i++)
                names[i] = er1.Names[i];
            names[er1.Names.Length] = "lambda0";
            Vector values = new Vector(er1.Values.Length + 1);
            values[new Range(0, values.Length - 2)] = (Vector)er1.Values;
            values[Range.End] = lambda;
            EstimationResult result = new EstimationResult(names, values);
            return result;
        }
Esempio n. 2
0
        public override EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            IMarketData[] tmp = data[0] as IMarketData[];
            tmp = tmp.OrderBy(x => x.TimeStamp).Reverse().ToArray();

            foreach (Scalar entry in tmp)
            {
                //check for positiveness
                if (entry.Value < 0)
                {
                    string errMsg = "Log-Mean Reverting calibration: input series cannot contain negative entries";

                    return(new EstimationResult(errMsg));
                }
            }

            //convert to Vector and transform to log-series
            Vector s = (Vector)Array.ConvertAll <IMarketData, double>(tmp, x => Math.Log(((Scalar)x).Value));


            //Assumes elements are  order for decreasing date
            double dt = (tmp[0].TimeStamp - tmp[1].TimeStamp).TotalDays / 252.0;


            var calibrationResult = CalibrateOU(s, dt);


            // initial value and long term are expressed original value
            calibrationResult.Values[0] = Math.Exp(calibrationResult.Values[0]);
            calibrationResult.Values[2] = Math.Exp(calibrationResult.Values[2]);


            return(calibrationResult);
        }
        /// <summary>
        /// Attempts a calibration through <see cref="SwaptionHW1OptimizationProblem"/>
        /// using swaption matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            LambdaCalibrationSettings lsettings = (LambdaCalibrationSettings)settings;

            if (lsettings.Years > lsettings.BondMaturity)
            {
                throw new Exception("Bond maturity has to be greater of the historical series time span.");
            }

            InterestRateMarketData irmd     = data[0] as InterestRateMarketData;
            List <object>          IrmdData = new List <object>();

            IrmdData.Add(irmd);
            CapletEstimator  CapEst = new CapletEstimator();
            EstimationResult er1    = CapEst.Estimate(IrmdData);

            DiscountingCurveMarketData[] dcmd = Array.ConvertAll <IMarketData, DiscountingCurveMarketData>
                                                    ((IMarketData[])data[1], el => (DiscountingCurveMarketData)el);
            MarketPriceOfRiskCalculator mporc = new MarketPriceOfRiskCalculator();
            double lambda = mporc.Calculate(dcmd, lsettings);

            string[] names = new string[er1.Names.Length + 1];
            for (int i = 0; i < er1.Names.Length; i++)
            {
                names[i] = er1.Names[i];
            }
            names[er1.Names.Length] = "lambda0";
            Vector values = new Vector(er1.Values.Length + 1);

            values[new Range(0, values.Length - 2)] = (Vector)er1.Values;
            values[Range.End] = lambda;
            EstimationResult result = new EstimationResult(names, values);

            return(result);
        }
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            EstimationResult r = new EstimationResult();

            r.Objects = new object[] { };
            return(r);
        }
Esempio n. 5
0
 /// <summary>
 /// List required market data inlcuding normal vol
 /// </summary>
 /// <param name="settings"></param>
 /// <param name="query"></param>
 /// <returns></returns>
 public override EstimateRequirement[] GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     return(new EstimateRequirement[] {
         new EstimateRequirement(typeof(InterestRateMarketData)),
         new EstimateRequirement()
         {
             Field = "Vol-ATM-N", MarketDataType = typeof(MatrixMarketData), TickerReplacement = GetSwaptionVolatilityTicker(query.Market)
         }
     });
 }
Esempio n. 6
0
        public override EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            // Use historical calibration
            var calibrationResult = base.Estimate(data, settings, controller, properties);

            // Set long-term and initial value to the same value
            calibrationResult.Values[0] = longTermDeprecation * calibrationResult.Values[0];
            calibrationResult.Values[2] = calibrationResult.Values[0];

            return(calibrationResult);
        }
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            string[] names = new string[] { "Alpha", "Sigma" };

            var result          = new EstimationResult(names, new double[] { 0.1, 0.05 });
            var forwardingCurve = data[0] as DiscountingCurveMarketData;

            result.ZRX = (double[])forwardingCurve.Durations;
            result.ZRY = (double[])forwardingCurve.Values;
            return(result);
        }
        /// <summary>
        ///
        /// </summary>
        /// <param name="data"></param>
        /// <param name="settings"></param>
        /// <param name="controller"></param>
        /// <param name="properties"></param>
        /// <returns>An estimation results containing values for mu,sigma and lambda.</returns>
        public virtual EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            IMarketData[] tmp = data[0] as IMarketData[];
            tmp = tmp.OrderBy(x => x.TimeStamp).Reverse().ToArray();

            //convert to Vector

            Vector s = (Vector)Array.ConvertAll <IMarketData, double>(tmp, x => ((Scalar)x).Value);


            //Assume elements are  order for decreasing date
            double dt = (tmp[0].TimeStamp - tmp[1].TimeStamp).TotalDays / 252.0;


            return(CalibrateOU(s, dt));
        }
Esempio n. 9
0
        public EstimationResult Estimate(System.Collections.Generic.List<object> marketData, IEstimationSettings settings = null, IController controller = null, System.Collections.Generic.Dictionary<string, object> properties = null)
        {
            CurveMarketData discountingCurve = (CurveMarketData)marketData[0];
            CallPriceMarketData Hdataset = (CallPriceMarketData)marketData[1];

            //gets the settings
            calibrationSettings = settings as DupireCalibrationSettings;

            //return this.FairmatEstimate(discountingCurve, Hdataset);
            // Removed quantlib estimate, it does not work correctly
            switch (calibrationSettings.LocalVolatilityCalculation)
            {
                case LocalVolatilityCalculation.Method1:
                    return this.FairmatEstimate(discountingCurve, Hdataset);
                case LocalVolatilityCalculation.QuantLib:
                    return QuantLibEstimate(discountingCurve, Hdataset);
                default:
                    throw new NotImplementedException("Method not implemented");
            }
        }
        /// <summary>
        /// Attempts to solve the Variance Gamma Optimization problem using
        /// <see cref="Heston.VarianceGammaOptimizationProblem"/>.
        /// </summary>
        /// <param name="data">
        /// The data to be used in order to perform the optimization.
        /// </param>
        /// <param name="settings">The parameter is not used.</param>
        /// <returns>The results of the optimization.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            EquitySpotMarketData       espmd = data[0] as EquitySpotMarketData;
            CallPriceMarketData        cpmd  = data[1] as CallPriceMarketData;
            DiscountingCurveMarketData dcmd  = data[2] as DiscountingCurveMarketData;
            EquityCalibrationData      ecd   = new EquityCalibrationData(cpmd, dcmd);

            this.s0 = espmd.Price;
            this.r  = espmd.RiskFreeRate;
            this.q  = espmd.DividendYield;

            this.k  = ecd.Hdata.Strike;
            this.m  = ecd.Hdata.Maturity;
            this.cp = ecd.Hdata.CallPrice;

            Vector x0 = (Vector) new double[] { -0.1, 0.2, 0.1 };
            IOptimizationAlgorithm algorithm            = new QADE();
            OptimizationSettings   optimizationSettings = new DESettings();

            // Maximum number of iteration allowed.

            // Positive integer values print debug info.
            optimizationSettings.Verbosity = 1;

            // Tolerance.
            optimizationSettings.epsilon = 10e-5;
            var solution = algorithm.Minimize(new VarianceGammaOptimizationProblem(this.q, this.s0, this.k,
                                                                                   this.r, this.cp, this.m),
                                              optimizationSettings, x0);

            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            var er = new EstimationResult();

            er.Names  = new string[] { "S0", "theta", "sigma", "nu", "rate", "dividend" };
            er.Values = new double[] { this.s0, solution.x[0], solution.x[1], solution.x[2], this.r, this.q };
            return(er);
        }
        protected override void Setup(EquityCalibrationData equityCalData, IEstimationSettings settings)
        {
            //No need to used constant values. In the optimization procedure we can use the term structure
            //as it is.


            /*
             * //equityCalData.dyFunc= LeastSquaresDividendCalibration(equityCalData.Hdata, equityCalData.zrFunc);
             *
             * if (settings != null) //uses settings if provided.
             * {
             *  var localSettings = (HestonEstimationSettings)settings;
             *
             *  equityCalData.SetToSpecificMaturity(localSettings.Maturity);
             * }
             * else
             *  equityCalData.SetToSpecificMaturity(1);
             */
            DY(equityCalData);
            return;
        }
Esempio n. 12
0
 protected virtual void Setup(EquityCalibrationData equityCalData, IEstimationSettings settings)
 {
 }
Esempio n. 13
0
        /// <summary>
        /// Attempts to solve the Heston optimization problem using
        /// <see cref="Heston.HestonOptimizationProblem"/>.
        /// </summary>
        /// <param name="marketData">Data to be used in order to perform the optimization.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">IController.</param>
        /// <returns>The results of the optimization.</returns>
        public EstimationResult Estimate(List <object> marketData, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            DateTime              t0 = DateTime.Now;
            var                   interestDataSet = (CurveMarketData)marketData[0];
            CallPriceMarketData   callDataSet     = (CallPriceMarketData)marketData[1];
            EquityCalibrationData equityCalData   = new EquityCalibrationData(callDataSet, interestDataSet);
            var                   spotPrice       = (DVPLI.MarketDataTypes.Scalar)marketData[2];


            Setup(equityCalData, settings);

            var calSettings = settings as HestonCalibrationSettings;
            // Creates the context.
            Document   doc = new Document();
            ProjectROV prj = new ProjectROV(doc);

            doc.Part.Add(prj);

            // Optimization problem instance.
            Vector matBound    = new Vector(2);
            Vector strikeBound = new Vector(2);

            if (calSettings != null)
            {
                matBound[0]    = calSettings.MinMaturity;
                matBound[1]    = calSettings.MaxMaturity;
                strikeBound[0] = calSettings.MinStrike;
                strikeBound[1] = calSettings.MaxStrike;
            }
            else
            {
                //use defaults
                matBound[0]    = 1.0 / 12; // .25;
                matBound[1]    = 6;        // 10; //Up to 6Y maturities
                strikeBound[0] = 0.4;
                strikeBound[1] = 1.6;
            }
            Console.WriteLine(callDataSet);

            /*
             * //CBA TEST
             * matBound[0] = 1;// .25;
             * matBound[1] = 3.5;// 10; //Up to 6Y maturities
             * strikeBound[0] = 0.5;// 0.5;
             * strikeBound[1] = 2;//1.5;
             */
            HestonCallOptimizationProblem problem = NewOptimizationProblem(equityCalData, matBound, strikeBound);
            int totalOpts = problem.numCall + problem.numPut;

            Console.WriteLine("Calibration based on " + totalOpts + " options. (" + problem.numCall + " call options and " + problem.numPut + " put options).");

            IOptimizationAlgorithm solver = new  QADE();
            //IOptimizationAlgorithm solver = new MultiLevelSingleLinkage();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.controller = controller;

            // If true the optimization algorithm will operate in parallel.
            o.Parallel = Engine.MultiThread;
            o.h        = 10e-8;
            o.epsilon  = 10e-8;

            SolutionInfo solution = null;

            double minObj = double.MaxValue;
            Vector minX   = null;
            int    Z      = 1;

            //if (problem.GetType() == typeof(Heston.HestonCallSimulationOptimizationProblem))
            //    Z = 2;

            for (int z = 0; z < Z; z++)
            {
                if (solver.GetType() == typeof(MultiLevelSingleLinkage))
                {
                    o.NP       = 50;
                    o.MaxIter  = 25;
                    o.MaxGamma = 6;
                }
                else
                {
                    o.NP      = 60;
                    o.MaxIter = 35;
                }
                o.Verbosity = 1;
                Vector x0 = null;// new Vector(new double[] { 0.5, 0.5, 0.8, -0.5, 0.05 });

                // GA
                solution = solver.Minimize(problem, o, x0);
                if (solution.errors)
                {
                    return(null);
                }

                o.options = "qn";
                o.MaxIter = 500;// 1000;

                if (solution != null)
                {
                    solution = solver2.Minimize(problem, o, solution.x);
                }
                else
                {
                    solution = solver2.Minimize(problem, o, x0);
                }
                if (solution.errors)
                {
                    return(null);
                }

                if (solution.obj < minObj)
                {
                    minObj = solution.obj;
                    minX   = solution.x.Clone();
                }
            }



            solution.obj = minObj;
            solution.x   = minX;

            //Displays pricing error structure
            HestonCallOptimizationProblem.displayObjInfo = true;
            problem.Obj(solution.x);
            HestonCallOptimizationProblem.displayObjInfo = false;
            Console.WriteLine("Calibration Time (s)\t" + (DateTime.Now - t0).TotalSeconds);

            return(BuildEstimate(spotPrice, interestDataSet, callDataSet, equityCalData, solution));
        }
Esempio n. 14
0
        public EstimationResult Estimate(System.Collections.Generic.List <object> marketData, IEstimationSettings settings = null, IController controller = null, System.Collections.Generic.Dictionary <string, object> properties = null)
        {
            CurveMarketData     discountingCurve = (CurveMarketData)marketData[0];
            CallPriceMarketData Hdataset         = (CallPriceMarketData)marketData[1];

            //gets the settings
            calibrationSettings = settings as DupireCalibrationSettings;


            //return this.FairmatEstimate(discountingCurve, Hdataset);
            // Removed quantlib estimate, it does not work correctly
            switch (calibrationSettings.LocalVolatilityCalculation)
            {
            case LocalVolatilityCalculation.Method1:
                return(this.FairmatEstimate(discountingCurve, Hdataset));

            case LocalVolatilityCalculation.QuantLib:
                return(QuantLibEstimate(discountingCurve, Hdataset));

            default:
                throw new NotImplementedException("Method not implemented");
            }
        }
Esempio n. 15
0
 /// <summary>
 /// Gets the types required by the estimator in order to work:
 /// InterestRateMarketData and CallPriceMarketData are
 /// the required type for this estimator.
 /// </summary>
 /// <param name="settings">The parameter is not used.</param>
 /// <param name="multivariateRequest">The parameter is not used.</param>
 /// <returns>
 /// An array containing the type InterestRateMarketData and CallPriceMarketData.
 /// </returns>
 public EstimateRequirement[] GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     return(new EstimateRequirement[] { new EstimateRequirement(typeof(DiscountingCurveMarketData), MarketRequirement.TickerMarket),
                                        new EstimateRequirement(typeof(CallPriceMarketData)),
                                        new EstimateRequirement(typeof(DVPLI.MarketDataTypes.Scalar)) });
 }
Esempio n. 16
0
        /// <summary>
        /// Attempts a calibration through <see cref="SwaptionHW1OptimizationProblem"/>
        /// using swaption matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset   = data[0] as InterestRateMarketData;
            MatrixMarketData       normalVol = null;

            if (data.Count > 1)
            {
                normalVol = (MatrixMarketData)data[1];
            }

            PFunction zr = new PFunction(null);

            // Loads the zero rate.
            double[,] zrvalue = (double[, ])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr           = zrvalue;

            double deltak = dataset.SwaptionTenor;

            Console.WriteLine("Swaption Tenor\t" + dataset.SwaptionTenor);

            var swaptionsFiltering = settings as SwaptionsFiltering;

            if (swaptionsFiltering == null)
            {
                swaptionsFiltering = new SwaptionsFiltering();//creates a default
            }
            //F stands for Full matrix
            var optionMaturityF      = normalVol != null ? normalVol.RowValues: dataset.OptionMaturity;
            var swapDurationF        = normalVol != null ? normalVol.ColumnValues: dataset.SwapDuration;
            var swaptionsVolatilityF = normalVol != null ? normalVol.Values: dataset.SwaptionsVolatility;

            int maturitiesCount = optionMaturityF.Count(x => x >= swaptionsFiltering.MinSwaptionMaturity && x <= swaptionsFiltering.MaxSwaptionMaturity);
            int durationsCount  = swapDurationF.Count(x => x >= swaptionsFiltering.MinSwapDuration && x <= swaptionsFiltering.MaxSwapDuration);


            Console.WriteLine(string.Format("Calibrating on {0} swaptions prices [#maturiries x #durations]=[{1} x {2}]", maturitiesCount * durationsCount, maturitiesCount, durationsCount));

            if (maturitiesCount * durationsCount == 0)
            {
                return(new EstimationResult("No swaptions satisfying criteria found, please relax filters"));
            }

            //reduced version
            var swaptionsVolatility = new Matrix(maturitiesCount, durationsCount); // dataset.SwaptionsVolatility;
            var optionMaturity      = new Vector(maturitiesCount);                 // dataset.OptionMaturity;
            var swapDuration        = new Vector(durationsCount);                  // dataset.SwapDuration;


            //Build filtered matrix and vectors
            int fm = 0;

            for (int m = 0; m < optionMaturityF.Length; m++)
            {
                int fd = 0;
                if (optionMaturityF[m] >= swaptionsFiltering.MinSwaptionMaturity && optionMaturityF[m] <= swaptionsFiltering.MaxSwaptionMaturity)
                {
                    for (int d = 0; d < swapDurationF.Length; d++)
                    {
                        if (swapDurationF[d] >= swaptionsFiltering.MinSwapDuration && swapDurationF[d] <= swaptionsFiltering.MaxSwapDuration)
                        {
                            swaptionsVolatility[fm, fd] = swaptionsVolatilityF[m, d];
                            swapDuration[fd]            = swapDurationF[d];
                            fd++;
                        }
                    }

                    optionMaturity[fm] = optionMaturityF[m];
                    fm++;
                }
            }

            var swbm = new SwaptionsBlackModel(zr, BlackModelFactory(zr));

            Matrix fsr;
            var    blackSwaptionPrice = 1000.0 * swbm.SwaptionsSurfBM(optionMaturity, swapDuration, swaptionsVolatility, deltak, out fsr);


            Console.WriteLine("Maturities\t" + optionMaturity);
            Console.WriteLine("swapDuration\t" + swapDuration);
            Console.WriteLine("SwaptionHWEstimator: Black model prices");
            Console.WriteLine(blackSwaptionPrice);

            SwaptionHW1 swhw1 = new SwaptionHW1(zr);
            SwaptionHW1OptimizationProblem problem = new SwaptionHW1OptimizationProblem(swhw1, blackSwaptionPrice, optionMaturity, swapDuration, deltak);

            IOptimizationAlgorithm solver  = new QADE();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP         = 20;
            o.MaxIter    = 5;
            o.Verbosity  = 1;
            o.controller = controller;
            SolutionInfo solution = null;

            Vector x0 = new Vector(new double[] { 0.1, 0.1 });

            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            o.epsilon = 10e-8;
            o.h       = 10e-8;
            o.MaxIter = 1000;

            // We can permit this, given it is fast.
            o.accourate_numerical_derivatives = true;

            if (solution != null)
            {
                solution = solver2.Minimize(problem, o, solution.x);
            }
            else
            {
                solution = solver2.Minimize(problem, o, x0);
            }
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }
            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = new string[] { "Alpha", "Sigma" };

            Console.WriteLine("SwaptionHWEstimator: hw model prices and error");
            problem.Obj(solution.x, true);

            EstimationResult result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();

            double obj = problem.Obj(solution.x);

            return(result);
        }
Esempio n. 17
0
        /// <summary>
        /// Attempts to solve the Heston optimization problem using
        /// <see cref="Heston.HestonOptimizationProblem"/>.
        /// </summary>
        /// <param name="marketData">Data to be used in order to perform the optimization.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">IController.</param>
        /// <returns>The results of the optimization.</returns>
        public EstimationResult Estimate(List<object> marketData, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            DateTime t0 = DateTime.Now;
            var interestDataSet = (CurveMarketData)marketData[0];
            CallPriceMarketData callDataSet = (CallPriceMarketData)marketData[1];
            EquityCalibrationData equityCalData = new EquityCalibrationData(callDataSet, interestDataSet);
            var spotPrice = (DVPLI.MarketDataTypes.Scalar)marketData[2];

            Setup(equityCalData, settings);

            var calSettings = settings as HestonCalibrationSettings;
            // Creates the context.
            Document doc = new Document();
            ProjectROV prj = new ProjectROV(doc);
            doc.Part.Add(prj);

            // Optimization problem instance.
            Vector matBound = new Vector(2);
            Vector strikeBound = new Vector(2);
            if (calSettings != null)
            {
                matBound[0] = calSettings.MinMaturity;
                matBound[1] = calSettings.MaxMaturity;
                strikeBound[0] = calSettings.MinStrike;
                strikeBound[1] = calSettings.MaxStrike;
            }
            else
            {
                //use defaults
                matBound[0] = 1.0 / 12;// .25;
                matBound[1] = 6;// 10; //Up to 6Y maturities
                strikeBound[0] = 0.4;
                strikeBound[1] = 1.6;
            }
            Console.WriteLine(callDataSet);
            /*
            //CBA TEST
            matBound[0] = 1;// .25;
            matBound[1] = 3.5;// 10; //Up to 6Y maturities
            strikeBound[0] = 0.5;// 0.5;
            strikeBound[1] = 2;//1.5;
            */
            HestonCallOptimizationProblem problem = NewOptimizationProblem(equityCalData, matBound, strikeBound);
            int totalOpts = problem.numCall + problem.numPut;
            Console.WriteLine("Calibration based on "+totalOpts+ " options. (" + problem.numCall + " call options and "+problem.numPut+" put options).");

            IOptimizationAlgorithm solver = new  QADE();
            //IOptimizationAlgorithm solver = new MultiLevelSingleLinkage();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();
            o.controller = controller;

            // If true the optimization algorithm will operate in parallel.
            o.Parallel = Engine.MultiThread;
            o.h = 10e-8;
            o.epsilon = 10e-8;

            SolutionInfo solution = null;

            double minObj=double.MaxValue;
            Vector minX= null;
            int Z = 1;
            //if (problem.GetType() == typeof(Heston.HestonCallSimulationOptimizationProblem))
            //    Z = 2;

            for(int z=0;z<Z;z++)
            {
                if (solver.GetType() == typeof(MultiLevelSingleLinkage))
                {
                    o.NP = 50;
                    o.MaxIter = 25;
                    o.MaxGamma = 6;
                }
                else
                {
                    o.NP = 60;
                    o.MaxIter = 35;
                }
                o.Verbosity = 1;
            Vector x0 = null;// new Vector(new double[] { 0.5, 0.5, 0.8, -0.5, 0.05 });

            // GA
            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
                return null;

            o.options = "qn";
            o.MaxIter = 500;// 1000;

            if (solution != null)
                solution = solver2.Minimize(problem, o, solution.x);
            else
            {
                solution = solver2.Minimize(problem, o, x0);
            }
            if (solution.errors)
                return null;

            if (solution.obj < minObj)
            {
                minObj = solution.obj;
                minX = solution.x.Clone();
            }
            }

            solution.obj = minObj;
            solution.x = minX;

            //Displays pricing error structure
            HestonCallOptimizationProblem.displayObjInfo = true;
            problem.Obj(solution.x);
            HestonCallOptimizationProblem.displayObjInfo = false;
            Console.WriteLine("Calibration Time (s)\t" + (DateTime.Now - t0).TotalSeconds);

            return BuildEstimate(spotPrice,interestDataSet, callDataSet, equityCalData, solution);
        }
 public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
 {
     EstimationResult r = new EstimationResult();
     r.Objects = new object[] { };
     return r;
 }
 EstimationResult IEstimator.Estimate(List <object> data, IEstimationSettings settings, IController controller, Dictionary <string, object> properties)
 {
     throw new NotImplementedException();
 }
 public EstimateRequirement[] GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     return(new EstimateRequirement[] { new EstimateRequirement(typeof(DVPLI.MarketDataTypes.Scalar[])) });
 }
        /// <summary>
        /// Attempts a calibration through <see cref="PelsserCappletOptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset   = data[0] as InterestRateMarketData;
            MatrixMarketData       normalVol = null;

            if (data.Count > 1)
            {
                normalVol = (MatrixMarketData)data[1];
            }
            EstimationResult result;

            if ((dataset.ZRMarket == null) || (dataset.CapVolatility == null))
            {
                result = new EstimationResult();
                result.ErrorMessage = "Not enough data to calibrate.\n" +
                                      "The estimator needs a ZRMarket and a CapVolatility " +
                                      "defined inside InterestRateMarketData";
                return(result);
            }

            // Backup the dates
            DateTime effectiveDate = DateTime.Now.Date;
            DateTime valuationDate = DateTime.Now.Date;

            if (Document.ActiveDocument != null)
            {
                effectiveDate = Document.ActiveDocument.ContractDate;
                valuationDate = Document.ActiveDocument.SimulationStartDate;
            }

            // Creates the Context.
            Document   doc = new Document();
            ProjectROV prj = new ProjectROV(doc);

            doc.Part.Add(prj);

            Function zr = new PFunction(null);

            zr.VarName = "zr";
            // Load the zr.
            double[,] zrvalue = (double[, ])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr           = zrvalue;

            prj.Symbols.Add(zr);


            var bm = BlackModelFactory(zr);

            if (bm is BachelierNormalModel)
            {
                (bm as BachelierNormalModel).Tenor = dataset.CapTenor;
            }

            double deltak = dataset.CapTenor;


            Matrix capVol = normalVol != null ? normalVol.Values:dataset.CapVolatility;
            Vector capMat = normalVol != null ? normalVol.RowValues: dataset.CapMaturity;
            Vector capK   = normalVol != null ? normalVol.ColumnValues: dataset.CapRate;

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Matrix calculated with black.
            var blackCaps = new Matrix(capMat.Length, capK.Length);

            for (int m = 0; m < capMat.Length; m++)
            {
                for (int s = 0; s < capK.Length; s++)
                {
                    bool skip = false;
                    if (preferences != null)
                    {
                        if (capK[s] < preferences.MinCapRate || capK[s] > preferences.MaxCapRate ||
                            capMat[m] < preferences.MinCapMaturity || capMat[m] > preferences.MaxCapMaturity)
                        {
                            skip = true;
                        }
                    }

                    if (capVol[m, s] == 0 || skip)
                    {
                        blackCaps[m, s] = 0;
                    }
                    else
                    {
                        blackCaps[m, s] = bm.Cap(capK[s], capVol[m, s], deltak, capMat[m]);
                    }
                }
            }

            if (blackCaps.IsNaN())
            {
                Console.WriteLine("Black caps matrix has non real values:");
                Console.WriteLine(blackCaps);
                throw new Exception("Cannot calculate Black caps");
            }

            // Maturity goes from 0 to the last item with step deltaK.
            Vector maturity = new Vector((int)(1.0 + capMat[capMat.Length - 1] / deltak));

            for (int l = 0; l < maturity.Length; l++)
            {
                maturity[l] = deltak * l;
            }

            Vector fwd = new Vector(maturity.Length - 1);

            for (int i = 0; i < fwd.Length; i++)
            {
                fwd[i] = bm.Fk(maturity[i + 1], deltak);
            }

            // Creates a default Pelsser model.
            Pelsser.SquaredGaussianModel model = new Pelsser.SquaredGaussianModel();
            model.a1     = (ModelParameter)0.014;
            model.sigma1 = (ModelParameter)0.001;
            model.zr     = (ModelParameter)"@zr";
            StochasticProcessExtendible iex = new StochasticProcessExtendible(prj, model);

            prj.Processes.AddProcess(iex);

            prj.Parse();

            DateTime t0 = DateTime.Now;
            Caplet   cp = new Caplet();

            PelsserCappletOptimizationProblem problem = new PelsserCappletOptimizationProblem(prj, cp, maturity, fwd, capK, deltak, capMat, blackCaps);

            IOptimizationAlgorithm solver  = new QADE();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP         = 35;
            o.TargetCost = 0.0025;
            o.MaxIter    = 10;
            o.Verbosity  = Math.Max(1, Engine.Verbose);
            o.controller = controller;
            // Parallel evaluation is not supported for this calibration.
            o.Parallel = false;
            o.Debug    = true;
            SolutionInfo solution = null;

            Vector x0 = (Vector) new double[] { 0.1, 0.1 };

            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            o.epsilon   = 10e-7;
            o.h         = 10e-7;
            o.MaxIter   = 1000;
            o.Debug     = true;
            o.Verbosity = Math.Max(1, Engine.Verbose);

            if (solution != null)
            {
                solution = solver2.Minimize(problem, o, solution.x);
            }
            else
            {
                solution = solver2.Minimize(problem, o, x0);
            }

            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            Console.WriteLine(solution);

            string[] names = new string[] { "alpha1", "sigma1" };
            result = new EstimationResult(names, solution.x);

            result.ZRX        = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY        = (double[])dataset.ZRMarket.ToArray();
            result.Objects    = new object[1];
            result.Objects[0] = solution.obj;
            //result.Fit = solution.obj;//Uncomment in 1.6
            // Restore the dates
            if (Document.ActiveDocument != null)
            {
                Document.ActiveDocument.ContractDate        = effectiveDate;
                Document.ActiveDocument.SimulationStartDate = valuationDate;
            }

            return(result);
        }
 public EstimateRequirement[] GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     return new EstimateRequirement[] { new EstimateRequirement(typeof(DVPLI.MarketDataTypes.Scalar[])) };
 }
        /// <summary>
        /// Attempts a calibration through <see cref="CapsCIROptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">A controller used for the optimization process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            // Creates the context.
            Document doc = new Document();
            ProjectROV prj = new ProjectROV(doc);
            doc.Part.Add(prj);

            CapCIROptimizationProblem problem = new CapCIROptimizationProblem(dataset);
            IOptimizationAlgorithm solver = new QADE();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();
            o.NP = 50;
            o.MaxIter = 50;
            o.Verbosity = 1;
            o.Parallel = false;
            o.controller = controller;
            SolutionInfo solution = null;

            Vector x0 = new Vector(new double[] { 1, 0.01, 0.05 });
            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
                return new EstimationResult(solution.message);

            o.epsilon = 10e-10;
            o.h = 10e-10;
            o.MaxIter = 1000;

            if (solution != null)
                solution = solver2.Minimize(problem, o, solution.x);
            else
                solution = solver2.Minimize(problem, o, x0);

            if (solution.errors)
                return new EstimationResult(solution.message);

            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = CIR.parameterNames;
            Vector values = new Vector(4);
            values[Range.New(0, 2)] = solution.x;
            values[3] = problem.r0;

            EstimationResult result = new EstimationResult(names, values);

            return result;
        }
        /// <summary>
        /// Attempts a calibration through <see cref="PelsserCappletOptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;
            EstimationResult result;
            if ((dataset.ZRMarket == null) || (dataset.CapVolatility == null))
            {
                result = new EstimationResult();
                result.ErrorMessage = "Not enough data to calibrate.\n" +
                    "The estimator needs a ZRMarket and a CapVolatility " +
                    "defined inside InterestRateMarketData";
                return result;
            }

            // Backup the dates
            DateTime effectiveDate = DateTime.Now.Date;
            DateTime valuationDate = DateTime.Now.Date;
            if (Document.ActiveDocument != null)
            {
                effectiveDate = Document.ActiveDocument.ContractDate;
                valuationDate = Document.ActiveDocument.SimulationStartDate;
            }

            // Creates the Context.
            Document doc = new Document();
            ProjectROV prj = new ProjectROV(doc);
            doc.Part.Add(prj);

            Function zr = new PFunction(null);
            zr.VarName = "zr";
            // Load the zr.
            double[,] zrvalue = (double[,])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr = zrvalue;

            prj.Symbols.Add(zr);

            BlackModel bm = new BlackModel(zr);

            double deltak = dataset.CapTenor;

            Matrix capVol = dataset.CapVolatility;
            Vector capMat = dataset.CapMaturity;
            Vector capK = dataset.CapRate;

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Matrix calculated with black.
            Matrix blackCaps = new Matrix(capMat.Length, capK.Length);
            for (int m = 0; m < capMat.Length; m++)
            {
                for (int s = 0; s < capK.Length; s++)
                {
                    bool skip = false;
                    if (preferences != null)
                    {
                        if (capK[s] < preferences.MinCapRate || capK[s] > preferences.MaxCapRate ||
                           capMat[m] < preferences.MinCapMaturity || capMat[m] > preferences.MaxCapMaturity)
                                {skip = true; }
                    }

                    if (capVol[m, s] == 0 || skip)
                        blackCaps[m, s] = 0;
                    else
                        blackCaps[m, s] = bm.Cap(capK[s], capVol[m, s], deltak, capMat[m]);
                }
            }

            if (blackCaps.IsNAN())
            {
                Console.WriteLine("Black caps matrix has non real values:");
                Console.WriteLine(blackCaps);
                throw new Exception("Cannot calculate Black caps");
            }

            // Maturity goes from 0 to the last item with step deltaK.
            Vector maturity = new Vector((int)(1.0 + capMat[capMat.Length - 1] / deltak));
            for (int l = 0; l < maturity.Length; l++)
                maturity[l] = deltak * l;

            Vector fwd = new Vector(maturity.Length - 1);
            for (int i = 0; i < fwd.Length; i++)
            {
                fwd[i] = bm.Fk(maturity[i + 1], deltak);
            }

            // Creates a default Pelsser model.
            Pelsser.SquaredGaussianModel model = new Pelsser.SquaredGaussianModel();
            model.a1 = (ModelParameter)0.014;
            model.sigma1 = (ModelParameter)0.001;
            model.zr = (ModelParameter)"@zr";
            StochasticProcessExtendible iex = new StochasticProcessExtendible(prj, model);
            prj.Processes.AddProcess(iex);

            prj.Parse();

            DateTime t0 = DateTime.Now;
            Caplet cp = new Caplet();

            PelsserCappletOptimizationProblem problem = new PelsserCappletOptimizationProblem(prj, cp, maturity, fwd, capK, deltak, capMat, blackCaps);

            IOptimizationAlgorithm solver = new QADE();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();
            o.NP = 35;
            o.TargetCost = 0.0025;
            o.MaxIter = 10;
            o.Verbosity = Math.Max(1, Engine.Verbose);
            o.controller = controller;
            // Parallel evaluation is not supported for this calibration.
            o.Parallel = false;
            o.Debug = true;
            SolutionInfo solution = null;

            Vector x0 = (Vector)new double[] { 0.1, 0.1 };

            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
                return new EstimationResult(solution.message);

            o.epsilon = 10e-7;
            o.h = 10e-7;
            o.MaxIter = 1000;
            o.Debug = true;
            o.Verbosity = Math.Max(1, Engine.Verbose);

            if (solution != null)
                solution = solver2.Minimize(problem, o, solution.x);
            else
                solution = solver2.Minimize(problem, o, x0);

            if (solution.errors)
                return new EstimationResult(solution.message);

            Console.WriteLine(solution);

            string[] names = new string[] { "alpha1", "sigma1" };
            result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();
            result.Objects = new object[1];
            result.Objects[0] = solution.obj;
            //result.Fit = solution.obj;//Uncomment in 1.6
            // Restore the dates
            if (Document.ActiveDocument != null)
            {
                Document.ActiveDocument.ContractDate = effectiveDate;
                Document.ActiveDocument.SimulationStartDate = valuationDate;
            }

            return result;
        }
 /// <summary>
 /// Gets the types required by the estimator in order to work:
 /// InterestRateMarketData is the only required type for this estimator.
 /// </summary>
 /// <param name="settings">The parameter is not used.</param>
 /// <param name="multivariateRequest">The parameter is not used.</param>
 /// <returns>An array containing the type InterestRateMarketData.</returns>
 public EstimateRequirement[] GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     return new EstimateRequirement[] { new EstimateRequirement(typeof(InterestRateMarketData)) };
 }
Esempio n. 26
0
        /// <summary>
        /// Attempts a calibration through <see cref="CapsCIROptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">A controller used for the optimization process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            // Creates the context.
            Document   doc = new Document();
            ProjectROV prj = new ProjectROV(doc);

            doc.Part.Add(prj);

            CapCIROptimizationProblem problem = new CapCIROptimizationProblem(dataset);
            IOptimizationAlgorithm    solver  = new QADE();
            IOptimizationAlgorithm    solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP         = 50;
            o.MaxIter    = 50;
            o.Verbosity  = 1;
            o.Parallel   = false;
            o.controller = controller;
            SolutionInfo solution = null;

            Vector x0 = new Vector(new double[] { 1, 0.01, 0.05 });

            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            o.epsilon = 10e-10;
            o.h       = 10e-10;
            o.MaxIter = 1000;

            if (solution != null)
            {
                solution = solver2.Minimize(problem, o, solution.x);
            }
            else
            {
                solution = solver2.Minimize(problem, o, x0);
            }

            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }

            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names  = CIR.parameterNames;
            Vector   values = new Vector(4);

            values[Range.New(0, 2)] = solution.x;
            values[3] = problem.r0;

            EstimationResult result = new EstimationResult(names, values);

            return(result);
        }
        /// <summary>
        /// Attempts a calibration through <see cref="CapsHW1OptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            PFunction zr = new PFunction(null);
            zr.VarName = "zr";

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Loads ZR
            double[,] zrvalue = (double[,])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr = zrvalue;

            BlackModel bm = new BlackModel(zr);

            double deltak = dataset.CapTenor;

            if (dataset.CapVolatility == null)
                return new EstimationResult("Cap not available at requested date");

            Matrix capVolatility = dataset.CapVolatility;
            Vector capMaturity = dataset.CapMaturity;
            Vector capRate = dataset.CapRate;
            double a = 0.1;
            double sigma = 0.1;

            // Matrix calculated with Black.
            Matrix blackCaps = new Matrix(capMaturity.Length, capRate.Length);
            Matrix logic = new Matrix(capMaturity.Length, capRate.Length);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    blackCaps[m, s] = bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                    if (double.IsNaN(blackCaps[m, s]))
                    {
                        bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                        throw new Exception("Malformed black caps");
                    }

                    if (blackCaps[m, s] == 0.0)
                    {
                        logic[m, s] = 0.0;
                    }
                    else
                    {
                        logic[m, s] = 1.0;
                    }

                    //filter
                    if (preferences != null)
                    {
                        if (capRate[s] < preferences.MinCapRate || capRate[s] > preferences.MaxCapRate ||
                            capMaturity[m]<preferences.MinCapMaturity|| capMaturity[m]>preferences.MaxCapMaturity)
                                {logic[m, s] = 0; blackCaps[m, s] = 0;}
                    }

                }
            }

            DateTime t0 = DateTime.Now;
            CapHW1 hw1Caps = new CapHW1(zr);
            Matrix caps = hw1Caps.HWMatrixCaps(capMaturity, capRate, a, sigma, deltak);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    caps[m, s] = logic[m, s] * caps[m, s];
                }
            }

            CapsHW1OptimizationProblem problem = new CapsHW1OptimizationProblem(hw1Caps, blackCaps, capMaturity, capRate, deltak);
            Vector provaparam = new Vector(2);

            var solver = new QADE();

            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();
            o.NP = 20;
            o.MaxIter = 10;
            o.Verbosity = 1;
            o.Parallel = false;
            SolutionInfo solution = null;
            Vector x0 = new Vector(new double[] { 0.05, 0.01 });
            o.controller = controller;
            solution = solver.Minimize(problem, o, x0);

            o.epsilon = 10e-8;
            o.h = 10e-8;

            o.MaxIter = 100;
            solution = solver2.Minimize(problem, o, solution.x);
            if (solution.errors)
                return new EstimationResult(solution.message);
            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = new string[] { "Alpha", "Sigma" };

            //solution.x[0] *= 3;

            EstimationResult result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();

            return result;
        }
        /// <summary>
        /// Attempts to solve the Variance Gamma Optimization problem using
        /// <see cref="Heston.VarianceGammaOptimizationProblem"/>.
        /// </summary>
        /// <param name="data">
        /// The data to be used in order to perform the optimization.
        /// </param>
        /// <param name="settings">The parameter is not used.</param>
        /// <returns>The results of the optimization.</returns>
        public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            EquitySpotMarketData espmd = data[0] as EquitySpotMarketData;
            CallPriceMarketData cpmd = data[1] as CallPriceMarketData;
            DiscountingCurveMarketData dcmd = data[2] as DiscountingCurveMarketData;
            EquityCalibrationData ecd = new EquityCalibrationData(cpmd, dcmd);
            this.s0 = espmd.Price;
            this.r = espmd.RiskFreeRate;
            this.q = espmd.DividendYield;

            this.k = ecd.Hdata.Strike;
            this.m = ecd.Hdata.Maturity;
            this.cp = ecd.Hdata.CallPrice;

            Vector x0 = (Vector)new double[] { -0.1, 0.2, 0.1 };
            IOptimizationAlgorithm algorithm = new QADE();
            OptimizationSettings optimizationSettings = new DESettings();

            // Maximum number of iteration allowed.

            // Positive integer values print debug info.
            optimizationSettings.Verbosity = 1;

            // Tolerance.
            optimizationSettings.epsilon = 10e-5;
            var solution = algorithm.Minimize(new VarianceGammaOptimizationProblem(this.q, this.s0, this.k,
                                                                          this.r, this.cp, this.m),
                                                                          optimizationSettings, x0);

            if (solution.errors)
                return new EstimationResult(solution.message);

            var er = new EstimationResult();
            er.Names= new string[]{"S0","theta","sigma","nu","rate","dividend"};
            er.Values = new double[] {this.s0,solution.x[0],solution.x[1],solution.x[2],this.r,this.q};
            return er;
        }
 EstimateRequirement[] IEstimator.GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     throw new NotImplementedException();
 }
 /// <summary>
 /// Gets the types required by the estimator in order to work:
 /// EquitySpotMarketData and CallPriceMarketData are
 /// the required type for this estimator.
 /// </summary>
 /// <param name="settings">The parameter is not used.</param>
 /// <param name="multivariateRequest">The parameter is not used.</param>
 /// <returns>
 /// An array containing the type EquitySpotMarketData and CallPriceMarketData.
 /// </returns>
 public EstimateRequirement[] GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     return new EstimateRequirement[] { new EstimateRequirement(typeof(EquitySpotMarketData)),
                                        new EstimateRequirement(typeof(CallPriceMarketData)),
                                        new EstimateRequirement(typeof(DiscountingCurveMarketData),MarketRequirement.TickerMarket) };
 }
        /// <summary>
        /// Attempts a calibration through <see cref="SwaptionHW1OptimizationProblem"/>
        /// using swaption matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            PFunction zr = new PFunction(null);
            // Loads the zero rate.
            double[,] zrvalue = (double[,])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr = zrvalue;

            double deltak = dataset.SwaptionTenor;

            var swaptionsFiltering = settings as SwaptionsFiltering;

            if (swaptionsFiltering == null)
                swaptionsFiltering = new SwaptionsFiltering();//creates a default

            int maturitiesCount = dataset.OptionMaturity.Count(x => x >= swaptionsFiltering.MinSwaptionMaturity && x <= swaptionsFiltering.MaxSwaptionMaturity);
            int durationsCount = dataset.SwapDuration.Count(x => x >= swaptionsFiltering.MinSwapDuration && x <= swaptionsFiltering.MaxSwapDuration);

            Console.WriteLine(string.Format("Calibrating on {0} swaptions prices [#maturiries x #durations]=[{1} x {2}]", maturitiesCount * durationsCount, maturitiesCount,durationsCount));

            if (maturitiesCount * durationsCount == 0)
                return new EstimationResult("No swaptions satisfying criteria found, please relax filters");

            Matrix swaptionsVolatility = new Matrix(maturitiesCount, durationsCount);// dataset.SwaptionsVolatility;
            Vector optionMaturity = new Vector(maturitiesCount);// dataset.OptionMaturity;
            Vector swapDuration = new Vector(durationsCount);// dataset.SwapDuration;

            //Build filtered matrix and vectors
            int fm=0;
            for (int m = 0; m < dataset.OptionMaturity.Length; m++)
            {
                int fd=0;
                if (dataset.OptionMaturity[m] >= swaptionsFiltering.MinSwaptionMaturity && dataset.OptionMaturity[m] <= swaptionsFiltering.MaxSwaptionMaturity)
                {
                    for (int d = 0; d < dataset.SwapDuration.Length; d++)
                    {
                        if (dataset.SwapDuration[d] >= swaptionsFiltering.MinSwapDuration && dataset.SwapDuration[d] <= swaptionsFiltering.MaxSwapDuration)
                        {
                            swaptionsVolatility[fm, fd] = dataset.SwaptionsVolatility[m, d];
                            swapDuration[fd] = dataset.SwapDuration[d];
                            fd++; }
                    }

                    optionMaturity[fm] = dataset.OptionMaturity[m];
                    fm++;
                }

            }

            SwaptionsBlackModel swbm = new SwaptionsBlackModel(zr);

            Matrix fsr;
            var blackSwaptionPrice = 1000.0 * swbm.SwaptionsSurfBM(optionMaturity, swapDuration, swaptionsVolatility, deltak, out fsr);

            Console.WriteLine("SwaptionHWEstimator: Black model prices");
            Console.WriteLine(blackSwaptionPrice);

            SwaptionHW1 swhw1 = new SwaptionHW1(zr);
            SwaptionHW1OptimizationProblem problem = new SwaptionHW1OptimizationProblem(swhw1, blackSwaptionPrice, optionMaturity, swapDuration, deltak);

            IOptimizationAlgorithm solver = new QADE();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();
            o.NP = 20;
            o.MaxIter = 5;
            o.Verbosity = 1;
            o.controller = controller;
            SolutionInfo solution = null;

            Vector x0 = new Vector(new double[] { 0.1, 0.1 });
            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
                return new EstimationResult(solution.message);

            o.epsilon = 10e-8;
            o.h = 10e-8;
            o.MaxIter = 1000;

            // We can permit this, given it is fast.
            o.accourate_numerical_derivatives = true;

            if (solution != null)
                solution = solver2.Minimize(problem, o, solution.x);
            else
                solution = solver2.Minimize(problem, o, x0);
            if (solution.errors)
                return new EstimationResult(solution.message);
            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = new string[] { "Alpha", "Sigma" };

            EstimationResult result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();

            double obj = problem.Obj(solution.x);

            return result;
        }
Esempio n. 32
0
 protected virtual void Setup(EquityCalibrationData equityCalData, IEstimationSettings settings)
 {
 }
 /// <summary>
 /// Gets the types required by the estimator in order to work:
 /// InterestRateMarketData is the only required type for this estimator.
 /// </summary>
 /// <param name="settings">The parameter is not used.</param>
 /// <param name="multivariateRequest">The parameter is not used.</param>
 /// <returns>An array containing the type InterestRateMarketData.</returns>
 public virtual EstimateRequirement[] GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     return(new EstimateRequirement[] { new EstimateRequirement(typeof(InterestRateMarketData)) });
 }
Esempio n. 34
0
        /// <summary>
        /// Attempts a calibration through <see cref="CapsHW1OptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List <object> data, IEstimationSettings settings = null, IController controller = null, Dictionary <string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;

            PFunction zr = new PFunction(null);

            zr.VarName = "zr";

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Loads ZR
            double[,] zrvalue = (double[, ])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr           = zrvalue;

            BlackModel bm = new BlackModel(zr);

            double deltak = dataset.CapTenor;

            if (dataset.CapVolatility == null)
            {
                return(new EstimationResult("Cap not available at requested date"));
            }


            Matrix capVolatility = dataset.CapVolatility;
            Vector capMaturity   = dataset.CapMaturity;
            Vector capRate       = dataset.CapRate;
            double a             = 0.1;
            double sigma         = 0.1;

            // Matrix calculated with Black.
            Matrix blackCaps = new Matrix(capMaturity.Length, capRate.Length);
            Matrix logic     = new Matrix(capMaturity.Length, capRate.Length);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    blackCaps[m, s] = bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                    if (double.IsNaN(blackCaps[m, s]))
                    {
                        bm.Cap(capRate[s], capVolatility[m, s], deltak, capMaturity[m]);
                        throw new Exception("Malformed black caps");
                    }

                    if (blackCaps[m, s] == 0.0)
                    {
                        logic[m, s] = 0.0;
                    }
                    else
                    {
                        logic[m, s] = 1.0;
                    }

                    //filter
                    if (preferences != null)
                    {
                        if (capRate[s] < preferences.MinCapRate || capRate[s] > preferences.MaxCapRate ||
                            capMaturity[m] < preferences.MinCapMaturity || capMaturity[m] > preferences.MaxCapMaturity)
                        {
                            logic[m, s] = 0; blackCaps[m, s] = 0;
                        }
                    }
                }
            }

            DateTime t0      = DateTime.Now;
            CapHW1   hw1Caps = new CapHW1(zr);
            Matrix   caps    = hw1Caps.HWMatrixCaps(capMaturity, capRate, a, sigma, deltak);

            for (int m = 0; m < capMaturity.Length; m++)
            {
                for (int s = 0; s < capRate.Length; s++)
                {
                    caps[m, s] = logic[m, s] * caps[m, s];
                }
            }

            CapsHW1OptimizationProblem problem = new CapsHW1OptimizationProblem(hw1Caps, blackCaps, capMaturity, capRate, deltak);
            Vector provaparam = new Vector(2);

            var solver = new QADE();

            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();

            o.NP        = 20;
            o.MaxIter   = 10;
            o.Verbosity = 1;
            o.Parallel  = false;
            SolutionInfo solution = null;
            Vector       x0       = new Vector(new double[] { 0.05, 0.01 });

            o.controller = controller;
            solution     = solver.Minimize(problem, o, x0);

            o.epsilon = 10e-8;
            o.h       = 10e-8;


            o.MaxIter = 100;
            solution  = solver2.Minimize(problem, o, solution.x);
            if (solution.errors)
            {
                return(new EstimationResult(solution.message));
            }
            Console.WriteLine("Solution:");
            Console.WriteLine(solution);
            string[] names = new string[] { "Alpha", "Sigma" };


            //solution.x[0] *= 3;

            EstimationResult result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();

            return(result);
        }
 /// <summary>
 /// Gets the types required by the estimator in order to work:
 /// InterestRateMarketData and zero rate curve historical serie are required for this estimator.
 /// </summary>
 /// <param name="settings">The parameter is not used.</param>
 /// <param name="multivariateRequest">The parameter is not used.</param>
 /// <returns>An array containing the type InterestRateMarketData.</returns>
 public EstimateRequirement[] GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     return(new EstimateRequirement[] { new EstimateRequirement(typeof(InterestRateMarketData)),
                                        new EstimateRequirement(typeof(DiscountingCurveMarketData[])) });
 }
 EstimationResult IEstimator.Estimate(List<object> data, IEstimationSettings settings, IController controller, Dictionary<string, object> properties)
 {
     throw new NotImplementedException();
 }
        protected override void Setup(EquityCalibrationData equityCalData, IEstimationSettings  settings)
        {
            //No need to used constant values. In the optimization procedure we can use the term structure
            //as it is.

            /*
             //equityCalData.dyFunc= LeastSquaresDividendCalibration(equityCalData.Hdata, equityCalData.zrFunc);

            if (settings != null) //uses settings if provided.
            {
                var localSettings = (HestonEstimationSettings)settings;

                equityCalData.SetToSpecificMaturity(localSettings.Maturity);
            }
            else
                equityCalData.SetToSpecificMaturity(1);
            */
            DY(equityCalData);
            return;
        }
 EstimateRequirement[] IEstimator.GetRequirements(IEstimationSettings settings, EstimateQuery query)
 {
     throw new NotImplementedException();
 }