protected void Start() { var hexGridSurface = RectangularHexGrid.Create( HexGridDescriptor.CreateSideUp(true, HexGridAxisStyles.StaggeredSymmetric), Vector3.zero, Quaternion.Euler(90f, 0f, 0f), false, false, new IntVector2(topologyWidth, topologyHeight)); _surface = hexGridSurface; Vector3[] vertexPositionsArray; _topology = hexGridSurface.CreateManifold(out vertexPositionsArray); _vertexPositions = vertexPositionsArray.AsVertexAttribute(); _facePositions = FaceAttributeUtility.CalculateFaceCentroidsFromVertexPositions(_topology.internalFaces, _vertexPositions); _faceCornerBisectors = EdgeAttributeUtility.CalculateFaceEdgeBisectorsFromVertexPositions(_topology.internalFaces, _vertexPositions, _facePositions); _faceBlockedStates = new bool[_topology.internalFaces.Count].AsFaceAttribute(); var triangulation = new SeparatedFacesUmbrellaTriangulation(2, (Topology.FaceEdge edge, DynamicMesh.IIndexedVertexAttributes vertexAttributes) => { vertexAttributes.position = _vertexPositions[edge]; vertexAttributes.normal = Vector3.up; vertexAttributes.color = borderColor; vertexAttributes.Advance(); vertexAttributes.position = _vertexPositions[edge] + _faceCornerBisectors[edge] * 0.05f; vertexAttributes.normal = (vertexAttributes.position + Vector3.up - _facePositions[edge.nearFace]).normalized; vertexAttributes.color = normalColor; vertexAttributes.Advance(); }, (Topology.Face face, DynamicMesh.IIndexedVertexAttributes vertexAttributes) => { vertexAttributes.position = _facePositions[face]; vertexAttributes.normal = Vector3.up; vertexAttributes.color = normalColor; vertexAttributes.Advance(); }); _dynamicMesh = DynamicMesh.Create( _topology.enumerableInternalFaces, DynamicMesh.VertexAttributes.Position | DynamicMesh.VertexAttributes.Normal | DynamicMesh.VertexAttributes.Color, triangulation); foreach (var mesh in _dynamicMesh.submeshes) { var meshFilter = Instantiate(submeshPrefab); meshFilter.mesh = mesh; meshFilter.transform.SetParent(transform, false); } var partioning = UniversalFaceSpatialPartitioning.Create(_surface, _topology, _vertexPositions); var picker = GetComponent <FaceSpatialPartitioningPicker>(); picker.partitioning = partioning; }
public static IEdgeAttribute <TAttributeValue>[] GetRingAttributes <TAttributeValue>(Topology topology, InputSlot[] inputSlots) { if (inputSlots.Length == 0) { return(null); } var array = new IEdgeAttribute <TAttributeValue> [inputSlots.Length]; for (int i = 0; i < inputSlots.Length; ++i) { var attribute = inputSlots[i].GetAsset <IEdgeAttribute <TAttributeValue> >(); if (attribute is IFaceAttribute <TAttributeValue> ) { attribute = new TwinEdgeAttributeWrapper <TAttributeValue>(topology, attribute); } array[i] = attribute; } return(array); }
private void DestroyOldGame() { if (_surface == null) { return; } var existingMeshCount = gameBoardMeshes.childCount; for (int i = 0; i < existingMeshCount; ++i) { Destroy(gameBoardMeshes.GetChild(i).gameObject); } foreach (var face in _topology.internalFaces) { if (_facePieces[face] != null) { Destroy(_facePieces[face].gameObject); } } _surface = null; _topology = null; _vertexPositions = null; _facePositions = null; _innerAngleBisectors = null; _facePieces = null; _faceBoardStates = null; _partitioning = null; _dynamicMesh = null; _picker.partitioning = null; _picker.enabled = false; _gameActive = false; }
public void SubdividedIcosahedronFaceEdgeMidpointWeightedIntersections() { CreateSubdividedIcosahedron(1f); edgeMidpoints = EdgeAttributeUtility.CalculateVertexEdgeMidpointsFromVertexPositions(topology.vertexEdges, vertexPositions); FaceEdgeMidpointWeightedIntersections(); }
public void CubeFaceEdgeMidpointWeightedIntersections() { CreateCube(1f); edgeMidpoints = EdgeAttributeUtility.CalculateVertexEdgeMidpointsFromVertexPositions(topology.vertexEdges, vertexPositions); FaceEdgeMidpointWeightedIntersections(); }
public void LargeDistortedHexGridFaceEdgeMidpointWeightedIntersections() { CreateDistortedHexGrid(8, 8, 1); edgeMidpoints = EdgeAttributeUtility.CalculateVertexEdgeMidpointsFromVertexPositions(topology.vertexEdges, vertexPositions); FaceEdgeMidpointWeightedIntersections(); }
public void SmallHexGridFaceEdgeMidpointWeightedIntersections() { CreateHexGrid(2, 2); edgeMidpoints = EdgeAttributeUtility.CalculateVertexEdgeMidpointsFromVertexPositions(topology.vertexEdges, vertexPositions); FaceEdgeMidpointWeightedIntersections(); }
protected void Start() { orbitalCamera.enabled = !isInverted; pivotalCamera.enabled = isInverted; exteriorLight.enabled = !isInverted; interiorLight.enabled = isInverted; _lightVector = (isInverted ? interiorLight : exteriorLight).transform.position; _lightAxis = Vector3.Cross(Vector3.Cross(Vector3.up, _lightVector), _lightVector); RenderSettings.ambientLight = new Color(0.3f, 0.4f, 0.5f); RenderSettings.ambientIntensity = 0.25f; RenderSettings.customReflection = whiteCubeMap; RenderSettings.reflectionIntensity = 0.125f; RenderSettings.defaultReflectionMode = UnityEngine.Rendering.DefaultReflectionMode.Custom; _picker = GetComponent <FaceSpatialPartitioningPicker>(); _surface = SphericalSurface.Create(Vector3.up, Vector3.right, 10f, isInverted); Vector3[] baseVertexPositionsArray; Topology baseTopology; SphericalManifoldUtility.CreateIcosahedron(_surface, out baseTopology, out baseVertexPositionsArray); Vector3[] vertexPositionsArray; SphericalManifoldUtility.Subdivide(_surface, baseTopology, baseVertexPositionsArray.AsVertexAttribute(), topologySubdivision, out _topology, out vertexPositionsArray); _vertexPositions = PositionalVertexAttribute.Create(_surface, vertexPositionsArray); SphericalManifoldUtility.MakeDual(_surface, _topology, _vertexPositions, out vertexPositionsArray); _vertexPositions = PositionalVertexAttribute.Create(_surface, vertexPositionsArray); var regularityWeight = 0.5f; var equalAreaWeight = 1f - regularityWeight; var regularityRelaxedVertexPositions = new Vector3[_topology.vertices.Count].AsVertexAttribute(); var equalAreaRelaxedVertexPositions = new Vector3[_topology.vertices.Count].AsVertexAttribute(); var relaxedVertexPositions = regularityRelaxedVertexPositions; var faceCentroids = PositionalFaceAttribute.Create(_surface, _topology.internalFaces.Count); var faceCentroidAngles = new float[_topology.faceEdges.Count].AsEdgeAttribute(); var vertexAreas = new float[_topology.vertices.Count].AsVertexAttribute(); FaceAttributeUtility.CalculateFaceCentroidsFromVertexPositions(_topology.internalFaces, _vertexPositions, faceCentroids); VertexAttributeUtility.CalculateVertexAreasFromVertexPositionsAndFaceCentroids(_topology.vertices, _vertexPositions, faceCentroids, vertexAreas); Func <float> relaxIterationFunction = () => { SphericalManifoldUtility.RelaxVertexPositionsForRegularity(_surface, _topology, _vertexPositions, true, regularityRelaxedVertexPositions); SphericalManifoldUtility.RelaxVertexPositionsForEqualArea(_surface, _topology, _vertexPositions, true, equalAreaRelaxedVertexPositions, faceCentroids, faceCentroidAngles, vertexAreas); for (int i = 0; i < relaxedVertexPositions.Count; ++i) { relaxedVertexPositions[i] = regularityRelaxedVertexPositions[i] * regularityWeight + equalAreaRelaxedVertexPositions[i] * equalAreaWeight; } var relaxationAmount = SphericalManifoldUtility.CalculateRelaxationAmount(_vertexPositions, relaxedVertexPositions); for (int i = 0; i < _vertexPositions.Count; ++i) { _vertexPositions[i] = relaxedVertexPositions[i]; } return(relaxationAmount); }; Func <bool> repairFunction = () => { return(SphericalManifoldUtility.ValidateAndRepair(_surface, _topology, _vertexPositions, 0.5f, true)); }; Action relaxationLoopFunction = TopologyRandomizer.CreateRelaxationLoopFunction(20, 20, 0.95f, relaxIterationFunction, repairFunction); TopologyRandomizer.Randomize( _topology, 1, 0.1f, 3, 3, 5, 7, true, _random, relaxationLoopFunction); _facePositions = PositionalFaceAttribute.Create(_surface, _topology.internalFaces.Count); FaceAttributeUtility.CalculateFaceCentroidsFromVertexPositions(_topology.internalFaces, _vertexPositions, _facePositions); _maximumFaceDistance = 0f; foreach (var edge in _topology.faceEdges) { var distance = Geometry.AngleBetweenVectors(_facePositions[edge.nearFace], _facePositions[edge.farFace]) * _surface.radius; _maximumFaceDistance = Mathf.Max(_maximumFaceDistance, distance); } _innerAngleBisectors = EdgeAttributeUtility.CalculateFaceEdgeBisectorsFromVertexPositions(_topology.internalFaces, _vertexPositions, _facePositions); _innerVertexPositions = new Vector3[_topology.faceEdges.Count].AsEdgeAttribute(); foreach (var edge in _topology.faceEdges) { _innerVertexPositions[edge] = _vertexPositions[edge] + _innerAngleBisectors[edge] * 0.03f; } _faceNormals = FaceAttributeUtility.CalculateFaceNormalsFromSurface(_topology.faces, _surface, _facePositions); _faceUVFrames = FaceAttributeUtility.CalculatePerFaceSphericalUVFramesFromFaceNormals(_topology.faces, _faceNormals, Quaternion.identity); _faceOuterEdgeUVs = EdgeAttributeUtility.CalculatePerFaceUnnormalizedUVsFromVertexPositions(_topology.faces, _vertexPositions, _faceUVFrames); _faceInnerEdgeUVs = EdgeAttributeUtility.CalculatePerFaceUnnormalizedUVsFromVertexPositions(_topology.faces, _innerVertexPositions, _faceUVFrames); _faceCenterUVs = FaceAttributeUtility.CalculateUnnormalizedUVsFromFacePositions(_topology.faces, _facePositions, _faceUVFrames); var faceMinUVs = new Vector2[_topology.faces.Count].AsFaceAttribute(); var faceRangeUVs = new Vector2[_topology.faces.Count].AsFaceAttribute(); FaceAttributeUtility.CalculateFaceEdgeMinAndRangeValues(_topology.faces, _faceOuterEdgeUVs, faceMinUVs, faceRangeUVs); foreach (var face in _topology.faces) { var uvMin = faceMinUVs[face]; var uvRange = faceRangeUVs[face]; var adjusted = AspectRatioUtility.Expand(new Rect(uvMin.x, uvMin.y, uvRange.x, uvRange.y), 1f); faceMinUVs[face] = adjusted.min; faceRangeUVs[face] = adjusted.size; } _faceOuterEdgeUVs = EdgeAttributeUtility.CalculatePerFaceUniformlyNormalizedUVsFromFaceUVMinAndRange(_topology.faces, faceMinUVs, faceRangeUVs, _faceOuterEdgeUVs); _faceInnerEdgeUVs = EdgeAttributeUtility.CalculatePerFaceUniformlyNormalizedUVsFromFaceUVMinAndRange(_topology.faces, faceMinUVs, faceRangeUVs, _faceInnerEdgeUVs); _faceCenterUVs = FaceAttributeUtility.CalculateUniformlyNormalizedUVsFromFaceUVMinAndRange(_topology.faces, faceMinUVs, faceRangeUVs, _faceCenterUVs); _partitioning = UniversalFaceSpatialPartitioning.Create(_surface, _topology, _vertexPositions); _picker.partitioning = _partitioning; _picker.enabled = true; _faceTerrainIndices = new int[_topology.faces.Count].AsFaceAttribute(); var terrainWeights = new int[] { grassWeight, waterWeight, desertWeight, mountainWeight }; int terrainWeightSum = 0; foreach (var weight in terrainWeights) { terrainWeightSum += weight; } var rootFaces = new List <Topology.Face>(); var rootFaceEdges = new List <Topology.FaceEdge>(); for (int regionIndex = 0; regionIndex < geographicalRegionCount; ++regionIndex) { Topology.Face face; do { face = _topology.internalFaces[_random.Index(_topology.internalFaces.Count)]; } while (rootFaces.Contains(face)); rootFaces.Add(face); foreach (var edge in face.edges) { rootFaceEdges.Add(edge); } _faceTerrainIndices[face] = _random.WeightedIndex(terrainWeights, terrainWeightSum); } TopologyVisitor.VisitFacesInRandomOrder(rootFaceEdges, (FaceEdgeVisitor visitor) => { _faceTerrainIndices[visitor.edge.farFace] = _faceTerrainIndices[visitor.edge.nearFace]; visitor.VisitInternalNeighborsExceptSource(); }, _random); _faceSeenStates = new bool[_topology.faces.Count].AsFaceAttribute(); _faceSightCounts = new int[_topology.faces.Count].AsFaceAttribute(); var triangulation = new SeparatedFacesUmbrellaTriangulation(2, (Topology.FaceEdge edge, DynamicMesh.IIndexedVertexAttributes vertexAttributes) => { var face = edge.nearFace; var faceNormal = _faceNormals[face]; var gridOverlayU = GetGridOverlayU(false, _faceSeenStates[face], _faceSightCounts[face]); vertexAttributes.position = _vertexPositions[edge]; vertexAttributes.normal = faceNormal; vertexAttributes.uv1 = AdjustSurfaceUV(_faceOuterEdgeUVs[edge], _faceTerrainIndices[face]); vertexAttributes.uv2 = new Vector2(gridOverlayU, 0f); vertexAttributes.Advance(); vertexAttributes.position = _innerVertexPositions[edge]; vertexAttributes.normal = faceNormal; vertexAttributes.uv1 = AdjustSurfaceUV(_faceInnerEdgeUVs[edge], _faceTerrainIndices[face]); vertexAttributes.uv2 = new Vector2(gridOverlayU, 0.5f); vertexAttributes.Advance(); }, (Topology.Face face, DynamicMesh.IIndexedVertexAttributes vertexAttributes) => { vertexAttributes.position = _facePositions[face]; vertexAttributes.normal = _faceNormals[face]; vertexAttributes.uv1 = AdjustSurfaceUV(_faceCenterUVs[face], _faceTerrainIndices[face]); vertexAttributes.uv2 = new Vector2(GetGridOverlayU(false, _faceSeenStates[face], _faceSightCounts[face]), 1f); vertexAttributes.Advance(); }); _dynamicMesh = DynamicMesh.Create( _topology.enumerableInternalFaces, DynamicMesh.VertexAttributes.Position | DynamicMesh.VertexAttributes.Normal | DynamicMesh.VertexAttributes.UV1 | DynamicMesh.VertexAttributes.UV2, triangulation); foreach (var mesh in _dynamicMesh.submeshes) { var meshObject = Instantiate(planetMeshPrefab); meshObject.mesh = mesh; meshObject.transform.SetParent(planetMeshes, false); } _faceUnits = new Transform[_topology.faces.Count].AsFaceAttribute(); for (int i = 0; i < unitCount; ++i) { Topology.Face face; do { face = _topology.internalFaces[_random.Index(_topology.internalFaces.Count)]; } while (_faceTerrainIndices[face] == 1 || _faceUnits[face] != null); var unit = Instantiate(unitPrefab); unit.SetParent(units, false); unit.transform.position = _facePositions[face] + _faceNormals[face] * 0.15f; _faceUnits[face] = unit; RevealUnitVicinity(face); } _dynamicMesh.RebuildMesh(DynamicMesh.VertexAttributes.UV2); }
public void StartNewGame() { DestroyOldGame(); Vector3[] vertexPositionsArray; if (squaresToggle.isOn) { IntVector2 boardSize; if (smallToggle.isOn) { boardSize = new IntVector2(9, 9); } else if (mediumToggle.isOn) { boardSize = new IntVector2(13, 13); } else { boardSize = new IntVector2(19, 19); } _surface = RectangularQuadGrid.Create(Vector2.right, Vector2.up, Vector3.zero, Quaternion.identity, false, false, boardSize); _topology = ((RectangularQuadGrid)_surface).CreateManifold(out vertexPositionsArray); _vertexPositions = PositionalVertexAttribute.Create(_surface, vertexPositionsArray); } else if (hexesToggle.isOn) { IntVector2 boardSize; if (smallToggle.isOn) { boardSize = new IntVector2(9, 9); } else if (mediumToggle.isOn) { boardSize = new IntVector2(13, 13); } else { boardSize = new IntVector2(19, 19); } _surface = RectangularHexGrid.Create( HexGridDescriptor.CreateCornerUp(true, HexGridAxisStyles.StaggeredSymmetric), Vector3.zero, Quaternion.identity, false, false, boardSize); _topology = ((RectangularHexGrid)_surface).CreateManifold(out vertexPositionsArray); _vertexPositions = PositionalVertexAttribute.Create(_surface, vertexPositionsArray); } else { IntVector2 boardSize; if (smallToggle.isOn) { boardSize = new IntVector2(9, 9); } else if (mediumToggle.isOn) { boardSize = new IntVector2(13, 13); } else { boardSize = new IntVector2(19, 19); } _surface = RectangularHexGrid.Create( HexGridDescriptor.CreateCornerUp(true, HexGridAxisStyles.StaggeredSymmetric), Vector3.zero, Quaternion.identity, false, false, boardSize); _topology = ((RectangularHexGrid)_surface).CreateManifold(out vertexPositionsArray); _vertexPositions = PositionalVertexAttribute.Create(_surface, vertexPositionsArray); var regularityWeight = 0.5f; var equalAreaWeight = 1f - regularityWeight; var regularityRelaxedVertexPositions = new Vector3[_topology.vertices.Count].AsVertexAttribute(); var equalAreaRelaxedVertexPositions = new Vector3[_topology.vertices.Count].AsVertexAttribute(); var relaxedVertexPositions = regularityRelaxedVertexPositions; var faceCentroids = PositionalFaceAttribute.Create(_surface, _topology.internalFaces.Count); var vertexAreas = new float[_topology.vertices.Count].AsVertexAttribute(); FaceAttributeUtility.CalculateFaceCentroidsFromVertexPositions(_topology.internalFaces, _vertexPositions, faceCentroids); VertexAttributeUtility.CalculateVertexAreasFromVertexPositionsAndFaceCentroids(_topology.vertices, _vertexPositions, faceCentroids, vertexAreas); var totalArea = 0f; foreach (var vertexArea in vertexAreas) { totalArea += vertexArea; } Func <float> relaxIterationFunction = () => { PlanarManifoldUtility.RelaxVertexPositionsForRegularity(_topology, _vertexPositions, true, regularityRelaxedVertexPositions); PlanarManifoldUtility.RelaxVertexPositionsForEqualArea(_topology, _vertexPositions, totalArea, true, equalAreaRelaxedVertexPositions, faceCentroids, vertexAreas); for (int i = 0; i < relaxedVertexPositions.Count; ++i) { relaxedVertexPositions[i] = regularityRelaxedVertexPositions[i] * regularityWeight + equalAreaRelaxedVertexPositions[i] * equalAreaWeight; } var relaxationAmount = PlanarManifoldUtility.CalculateRelaxationAmount(_vertexPositions, relaxedVertexPositions); for (int i = 0; i < _vertexPositions.Count; ++i) { _vertexPositions[i] = relaxedVertexPositions[i]; } return(relaxationAmount); }; Func <bool> repairFunction = () => { return(PlanarManifoldUtility.ValidateAndRepair(_topology, _surface.normal, _vertexPositions, 0.5f, true)); }; Action relaxationLoopFunction = TopologyRandomizer.CreateRelaxationLoopFunction(20, 20, 0.95f, relaxIterationFunction, repairFunction); TopologyRandomizer.Randomize( _topology, 1, 0.1f, 3, 3, 5, 7, true, _random, relaxationLoopFunction); } _facePositions = PositionalFaceAttribute.Create(_surface, _topology.internalFaces.Count); FaceAttributeUtility.CalculateFaceCentroidsFromVertexPositions(_topology.internalFaces, _vertexPositions, _facePositions); _innerAngleBisectors = EdgeAttributeUtility.CalculateFaceEdgeBisectorsFromVertexPositions(_topology.internalFaces, PlanarSurface.Create(Vector3.zero, Quaternion.identity), _vertexPositions); _faceBoardStates = new BoardState[_topology.internalFaces.Count].AsFaceAttribute(); foreach (var face in _topology.internalFaces) { _faceBoardStates[face] = BoardState.Empty; } _facePieces = new Transform[_topology.internalFaces.Count].AsFaceAttribute(); _partitioning = UniversalFaceSpatialPartitioning.Create(_surface, _topology, _vertexPositions); _picker.partitioning = _partitioning; _picker.enabled = true; var centerVertexNormal = _surface.normal.normalized; var triangulation = new SeparatedFacesUmbrellaTriangulation(2, (Topology.FaceEdge edge, DynamicMesh.IIndexedVertexAttributes vertexAttributes) => { vertexAttributes.position = _vertexPositions[edge]; vertexAttributes.normal = (_vertexPositions[edge] + _surface.normal * 5f - _facePositions[edge.nearFace]).normalized; vertexAttributes.uv = new Vector2(0.25f, 0f); vertexAttributes.Advance(); vertexAttributes.position = _vertexPositions[edge] + _innerAngleBisectors[edge] * 0.05f; vertexAttributes.normal = (vertexAttributes.position + _surface.normal * 5f - _facePositions[edge.nearFace]).normalized; vertexAttributes.uv = new Vector2(0.25f, 0.5f); vertexAttributes.Advance(); }, (Topology.Face face, DynamicMesh.IIndexedVertexAttributes vertexAttributes) => { vertexAttributes.position = _facePositions[face]; vertexAttributes.normal = centerVertexNormal; vertexAttributes.uv = new Vector2(0.25f, 1f); vertexAttributes.Advance(); }); _dynamicMesh = DynamicMesh.Create( _topology.enumerableInternalFaces, DynamicMesh.VertexAttributes.Position | DynamicMesh.VertexAttributes.Normal | DynamicMesh.VertexAttributes.UV, triangulation); foreach (var mesh in _dynamicMesh.submeshes) { var meshObject = Instantiate(meshFilterRendererPrefab); meshObject.mesh = mesh; meshObject.transform.SetParent(gameBoardMeshes); } _gameBoardBounds = new Bounds(Vector3.zero, Vector3.zero); foreach (var vertex in _topology.vertices) { _gameBoardBounds.Encapsulate(_vertexPositions[vertex]); } AdjustCamera(); var pickerCollider = GetComponent <BoxCollider>(); pickerCollider.center = _gameBoardBounds.center; pickerCollider.size = _gameBoardBounds.size; _whiteCount = 0; _blackCount = 0; _moveCount = 0; whiteCountText.text = _whiteCount.ToString(); blackCountText.text = _blackCount.ToString(); _gameActive = true; _turn = BoardState.Black; }
/// <summary> /// Calculates the spherical surface area around each vertex that is closest to that vertex, based on face centroid angles of each edge. /// </summary> /// <param name="vertices">The collection of vertices whose areas are to be calculated.</param> /// <param name="surface">The surface describing the overall shape of the spherical manifold.</param> /// <param name="faceCentroidAngles">The centroid angles, in radians, of the face edges.</param> /// <param name="vertexAreas">A pre-allocated collection in which the surrounding surface areas will be stored.</param> /// <returns>The surrounding spherical surface areas of the vertices.</returns> /// <seealso cref="O:MakeIt.Tile.EdgeAttributeUtility.CalculateSphericalFaceCentroidAnglesFromFaceCentroids"/> public static IVertexAttribute <float> CalculateSphericalVertexAreasFromFaceCentroidAngles(Topology.VerticesIndexer vertices, SphericalSurface surface, IEdgeAttribute <float> faceCentroidAngles, IVertexAttribute <float> vertexAreas) { var radiusSquared = surface.radius * surface.radius; foreach (var vertex in vertices) { float angleSum = 0f; foreach (var edge in vertex.edges) { angleSum += faceCentroidAngles[edge]; } vertexAreas[vertex] = (angleSum - Mathf.PI) * radiusSquared; } return(vertexAreas); }
/// <summary> /// Calculates the spherical surface area around each vertex that is closest to that vertex, based on face centroid angles of each edge. /// </summary> /// <param name="vertices">The collection of vertices whose areas are to be calculated.</param> /// <param name="surface">The surface describing the overall shape of the spherical manifold.</param> /// <param name="faceCentroidAngles">The centroid angles, in radians, of the face edges.</param> /// <returns>The surrounding spherical surface areas of the vertices.</returns> /// <seealso cref="O:MakeIt.Tile.EdgeAttributeUtility.CalculateSphericalFaceCentroidAnglesFromFaceCentroids"/> public static IVertexAttribute <float> CalculateSphericalVertexAreasFromFaceCentroidAngles(Topology.VerticesIndexer vertices, SphericalSurface surface, IEdgeAttribute <float> faceCentroidAngles) { return(CalculateSphericalVertexAreasFromFaceCentroidAngles(vertices, surface, faceCentroidAngles, new float[vertices.Count].AsVertexAttribute())); }
/// <summary> /// Attempts to move the positions of vertices such that they have roughly uniform density, with a bias towards also making sure that the surface areas of the faces also become more uniform. /// </summary> /// <param name="surface">The spherical surface describing the overall shape of the manifold.</param> /// <param name="topology">The topology to relax.</param> /// <param name="vertexPositions">The original positions of the vertices to relax.</param> /// <param name="lockBoundaryPositions">Indicates that vertices with an external neighboring face should not have their positions altered.</param> /// <param name="relaxedVertexPositions">A pre-allocated collection in which the relaxed vertex positions will be stored. Should not be the same collection as <paramref name="vertexPositions"/>.</param> /// <param name="faceCentroids">A pre-allocated collection in which the intermediate face centroid positions will be stored.</param> /// <param name="vertexAreas">A pre-allocated collection in which the intermediate nearby surface areas of vertices will be stored.</param> /// <param name="faceCentroidAngles">A pre-allocated collection in which the intermediate face centroid angles will be stored.</param> /// <returns>The relaxed vertex positions.</returns> public static IVertexAttribute <Vector3> RelaxVertexPositionsForEqualArea(SphericalSurface surface, Topology topology, IVertexAttribute <Vector3> vertexPositions, bool lockBoundaryPositions, IVertexAttribute <Vector3> relaxedVertexPositions, IFaceAttribute <Vector3> faceCentroids, IEdgeAttribute <float> faceCentroidAngles, IVertexAttribute <float> vertexAreas) { var idealArea = surface.radius * surface.radius * 4f * Mathf.PI / topology.vertices.Count; FaceAttributeUtility.CalculateSphericalFaceCentroidsFromVertexPositions(topology.internalFaces, surface, vertexPositions, faceCentroids); EdgeAttributeUtility.CalculateSphericalFaceCentroidAnglesFromFaceCentroids(topology.faceEdges, surface, faceCentroids, faceCentroidAngles); VertexAttributeUtility.CalculateSphericalVertexAreasFromFaceCentroidAngles(topology.vertices, surface, faceCentroidAngles, vertexAreas); for (int i = 0; i < topology.vertices.Count; ++i) { relaxedVertexPositions[i] = new Vector3(0f, 0f, 0f); } foreach (var vertex in topology.vertices) { var multiplier = Mathf.Sqrt(idealArea / vertexAreas[vertex]); foreach (var edge in vertex.edges) { var neighborVertex = edge.vertex; var neighborRelativeCenter = vertexPositions[edge.twin]; relaxedVertexPositions[neighborVertex] += (vertexPositions[neighborVertex] - neighborRelativeCenter) * multiplier + neighborRelativeCenter; } } foreach (var vertex in topology.vertices) { if (!lockBoundaryPositions || !vertex.hasExternalFaceNeighbor) { relaxedVertexPositions[vertex] = relaxedVertexPositions[vertex].WithMagnitude(surface.radius); } else { relaxedVertexPositions[vertex] = vertexPositions[vertex]; } } return(relaxedVertexPositions); }