Esempio n. 1
0
            /// <summary>Runs the Greedy search algorithm algorithm on a graph.</summary>
            /// <param name="start">The node to start at.</param>
            /// <param name="neighbors">Step function for all neigbors of a given node.</param>
            /// <param name="heuristic">Computes the heuristic value of a given node in a graph.</param>
            /// <param name="goal">Predicate for determining if we have reached the goal node.</param>
            /// <returns>Stepper of the shortest path or null if no path exists.</returns>
            public static Stepper <T> Greedy(T start, Neighbors neighbors, Heuristic heuristic, Goal goal)
            {
                // using a heap (aka priority queue) to store nodes based on their computed heuristic value
                Heap <Greedy_Node> fringe = new HeapArray <Greedy_Node>(
                    // NOTE: I just reversed the order of left and right because smaller values are higher priority
                    (Greedy_Node left, Greedy_Node right) => { return(Compute <Math> .Compare(right.Priority, left.Priority)); });

                // push starting node
                Greedy_Node start_node = new Greedy_Node(null, start, default(Math));

                fringe.Enqueue(start_node);

                // run the algorithm
                while (fringe.Count != 0)
                {
                    Greedy_Node current = fringe.Dequeue();
                    if (goal(current.Value))
                    {
                        return(Greedy_BuildPath(current));
                    }
                    else
                    {
                        neighbors(current.Value,
                                  (T neighbor) =>
                        {
                            Greedy_Node newNode = new Greedy_Node(current, neighbor, heuristic(neighbor));
                            fringe.Enqueue(newNode);
                        });
                    }
                }
                return(null);                // goal node was not reached (no path exists)
            }
Esempio n. 2
0
            /// <summary>Runs the A* search algorithm algorithm on a graph.</summary>
            /// <param name="start">The node to start at.</param>
            /// <param name="neighbors">Step function for all neigbors of a given node.</param>
            /// <param name="heuristic">Computes the heuristic value of a given node in a graph.</param>
            /// <param name="cost">Computes the cost of moving from the current node to a specific neighbor.</param>
            /// <param name="goal">Predicate for determining if we have reached the goal node.</param>
            /// <returns>Stepper of the shortest path or null if no path exists.</returns>
            public static Stepper <T> Astar(T start, Neighbors neighbors, Heuristic heuristic, Cost cost, Goal goal)
            {
                // using a heap (aka priority queue) to store nodes based on their computed A* f(n) value
                Heap <Astar_Node> fringe = new HeapArray <Astar_Node>(
                    // NOTE: Typical A* implementations prioritize smaller values
                    (Astar_Node left, Astar_Node right) =>
                {
                    Comparison comparison = Compute.Compare <Math>(right.Priority, left.Priority);
                    return(comparison);
                });

                // using a map (aka dictionary) to store costs from start to current nodes
                Map <Math, Astar_Node> computed_costs = new MapHashArray <Math, Astar_Node>();

                // construct the f(n) for this A* execution
                Astar_function function = (T node, Astar_Node previous) =>
                {
                    Math previousCost  = computed_costs.Get(previous);
                    Math currentCost   = cost(previous.Value, node);
                    Math costFromStart = Compute.Add <Math>(previousCost, currentCost);
                    Math hueristic     = heuristic(node);
                    return(Compute.Add <Math>(costFromStart, hueristic));
                };

                // push starting node
                Astar_Node start_node = new Astar_Node(null, start, default(Math));

                fringe.Enqueue(start_node);
                computed_costs.Add(start_node, default(Math));

                // run the algorithm
                while (fringe.Count != 0)
                {
                    Astar_Node current = fringe.Dequeue();
                    if (goal(current.Value))
                    {
                        return(Astar_BuildPath(current));
                    }
                    else
                    {
                        neighbors(current.Value,
                                  (T neighbor) =>
                        {
                            Astar_Node newNode = new Astar_Node(current, neighbor, function(neighbor, current));
                            Math costValue     = Compute.Add <Math>(computed_costs.Get(current), cost(current.Value, neighbor));
                            computed_costs.Add(newNode, costValue);
                            fringe.Enqueue(newNode);
                        });
                    }
                }
                return(null);                // goal node was not reached (no path exists)
            }
Esempio n. 3
0
        [TestMethod] public void Dequeue_Testing()
        {
            void Test <T>(T[] values, Compare <T> compare)
            {
                T[] clonedValues = (T[])values.Clone();
                Towel.Sort.Shuffle(clonedValues);
                IHeap <T> heap = new HeapArray <T>(compare);

                clonedValues.Stepper(x => heap.Enqueue(x));
                foreach (T value in values)
                {
                    T dequeue = heap.Dequeue();
                    Assert.IsTrue(value.Equals(dequeue));
                }
            }

            {             // int compare
                const int count  = 100;
                int[]     values = new int[count];
                Stepper.Iterate(count, i => values[i] = i);
                Array.Sort(values, (a, b) => - a.CompareTo(b));
                Test(values, (a, b) => Compare.Wrap(a.CompareTo(b)));
            }
            {             // string compare
                const int count  = 100;
                string[]  values = new string[count];
                Stepper.Iterate(count, i => values[i] = i.ToString());
                Array.Sort(values, (a, b) => - a.CompareTo(b));
                Test(values, (a, b) => Compare.Wrap(a.CompareTo(b)));
            }
            {             // int reverse compare
                const int count  = 100;
                int[]     values = new int[count];
                Stepper.Iterate(count, i => values[i] = i);
                Array.Sort(values);
                Test(values, (a, b) => Compare.Wrap(-a.CompareTo(b)));
            }
            {             // string reverse compare
                const int count  = 100;
                string[]  values = new string[count];
                Stepper.Iterate(count, i => values[i] = i.ToString());
                Array.Sort(values);
                Test(values, (a, b) => Compare.Wrap(-a.CompareTo(b)));
            }
        }
Esempio n. 4
0
        /// <summary>Runs the A* search algorithm algorithm on a graph.</summary>
        /// <param name="start">The node to start at.</param>
        /// <param name="neighbors">Step function for all neigbors of a given node.</param>
        /// <param name="heuristic">Computes the heuristic value of a given node in a graph.</param>
        /// <param name="cost">Computes the cost of moving from the current node to a specific neighbor.</param>
        /// <param name="goal">Predicate for determining if we have reached the goal node.</param>
        /// <returns>Stepper of the shortest path or null if no path exists.</returns>
        public static Stepper <NODE> Graph <NODE, NUMERIC>(NODE start, Neighbors <NODE> neighbors, Heuristic <NODE, NUMERIC> heuristic, Cost <NODE, NUMERIC> cost, Goal <NODE> goal)
        {
            // using a heap (aka priority queue) to store nodes based on their computed A* f(n) value
            IHeap <AstarNode <NODE, NUMERIC> > fringe = new HeapArray <AstarNode <NODE, NUMERIC> >(
                // NOTE: Typical A* implementations prioritize smaller values
                (a, b) => Compute.Compare(b.Priority, a.Priority));

            // push starting node
            fringe.Enqueue(
                new AstarNode <NODE, NUMERIC>(
                    null,
                    start,
                    default(NUMERIC),
                    Constant <NUMERIC> .Zero));

            // run the algorithm
            while (fringe.Count != 0)
            {
                AstarNode <NODE, NUMERIC> current = fringe.Dequeue();
                if (goal(current.Value))
                {
                    return(BuildPath(current));
                }
                else
                {
                    neighbors(current.Value,
                              (NODE neighbor) =>
                    {
                        NUMERIC costValue = Compute.Add(current.Cost, cost(current.Value, neighbor));
                        fringe.Enqueue(
                            new AstarNode <NODE, NUMERIC>(
                                current,
                                neighbor,
                                Compute.Add(heuristic(neighbor), costValue),
                                costValue));
                    });
                }
            }
            return(null); // goal node was not reached (no path exists)
        }
Esempio n. 5
0
        /// <summary>Runs the Greedy search algorithm algorithm on a graph.</summary>
        /// <param name="start">The node to start at.</param>
        /// <param name="neighbors">Step function for all neigbors of a given node.</param>
        /// <param name="heuristic">Computes the heuristic value of a given node in a graph.</param>
        /// <param name="goal">Predicate for determining if we have reached the goal node.</param>
        /// <returns>Stepper of the shortest path or null if no path exists.</returns>
        public static Stepper <NODE> Graph <NODE, NUMERIC>(NODE start, Neighbors <NODE> neighbors, Heuristic <NODE, NUMERIC> heuristic, Goal <NODE> goal)
        {
            // using a heap (aka priority queue) to store nodes based on their computed heuristic value
            IHeap <GreedyNode <NODE, NUMERIC> > fringe = new HeapArray <GreedyNode <NODE, NUMERIC> >(
                // NOTE: Typical graph search implementations prioritize smaller values
                (a, b) => Compute.Compare(b.Priority, a.Priority));

            // push starting node
            fringe.Enqueue(
                new GreedyNode <NODE, NUMERIC>(
                    null,
                    start,
                    default(NUMERIC)));

            // run the algorithm
            while (fringe.Count != 0)
            {
                GreedyNode <NODE, NUMERIC> current = fringe.Dequeue();
                if (goal(current.Value))
                {
                    return(BuildPath(current));
                }
                else
                {
                    neighbors(current.Value,
                              (NODE neighbor) =>
                    {
                        fringe.Enqueue(
                            new GreedyNode <NODE, NUMERIC>(
                                current,
                                neighbor,
                                heuristic(neighbor)));
                    });
                }
            }
            return(null); // goal node was not reached (no path exists)
        }
Esempio n. 6
0
        static void Main(string[] args)
        {
            Random random = new Random();
            int    test   = 10;

            Console.WriteLine("You are runnning the Data Structures example.");
            Console.WriteLine("======================================================");
            Console.WriteLine();

            #region Link (aka Tuple)

            Console.WriteLine("  Link------------------------------------");
            Console.WriteLine();
            Console.WriteLine("    A \"Link\" is like a System.Tuple that implements");
            Console.WriteLine("    Towel.DataStructures.DataStructure. A Link/Tuple is");
            Console.WriteLine("    used when you have a small, known-sized set of objects");
            Console.WriteLine("    that you want to bundle together without making a custom");
            Console.WriteLine("    custom class.");
            Console.WriteLine();

            Link link = new Link <int, int, int, int, int, int>(0, 1, 2, 3, 4, 5);
            Console.Write("    Traversal: ");
            link.Stepper(i => Console.Write(i));
            Console.WriteLine();

            Console.WriteLine("    Size: " + link.Size);
            Console.WriteLine();

            #endregion

            #region Indexed (aka Array)

            Console.WriteLine("  Indexed---------------------------------");
            Console.WriteLine();
            Console.WriteLine("    An \"Indexed\" is just a wrapper for arrays that implements");
            Console.WriteLine("    Towel.DataStructures.DataStructure. An array is used when");
            Console.WriteLine("    dealing with static-sized, known-sized sets of data. Arrays");
            Console.WriteLine("    can be sorted along 1 dimensions for binary searching algorithms.");
            Console.WriteLine();

            IIndexed <int> indexed = new IndexedArray <int>(test);

            Console.Write("    Filling in (0-" + (test - 1) + ")...");
            for (int i = 0; i < test; i++)
            {
                indexed[i] = i;
            }
            Console.WriteLine();

            Console.Write("    Traversal: ");
            indexed.Stepper(i => Console.Write(i));
            Console.WriteLine();

            Console.WriteLine("    Length: " + indexed.Length);

            Console.WriteLine();

            #endregion

            #region Addable (aka List)

            Console.WriteLine("  Addable---------------------------------");
            Console.WriteLine();
            Console.WriteLine("    An \"Addable\" is like an IList that implements");
            Console.WriteLine("    Towel.DataStructures.DataStructure. \"AddableArray\" is");
            Console.WriteLine("    the array implementation while \"AddableLinked\" is the");
            Console.WriteLine("    the linked-list implementation. An Addable/List is used");
            Console.WriteLine("    when dealing with an unknown quantity of data that you");
            Console.WriteLine("    will likely have to enumerate/step through everything. The");
            Console.WriteLine("    AddableArray shares the properties of an Indexed/Array in");
            Console.WriteLine("    that it can be relateively quickly sorted along 1 dimensions");
            Console.WriteLine("    for binary search algorithms.");
            Console.WriteLine();

            // AddableArray ---------------------------------------
            IAddable <int> addableArray = new AddableArray <int>(test);

            Console.Write("    [AddableArray] Adding (0-" + (test - 1) + ")...");
            for (int i = 0; i < test; i++)
            {
                addableArray.Add(i);
            }
            Console.WriteLine();

            Console.Write("    [AddableArray] Traversal: ");
            addableArray.Stepper(i => Console.Write(i));
            Console.WriteLine();

            Console.WriteLine("    [AddableArray] Count: " + addableArray.Count);

            addableArray.Clear(); // Clears the addable

            Console.WriteLine();

            // AddableLinked ---------------------------------------
            IAddable <int> addableLinked = new AddableLinked <int>();

            Console.Write("    [AddableLinked] Adding (0-" + (test - 1) + ")...");
            for (int i = 0; i < test; i++)
            {
                addableLinked.Add(i);
            }
            Console.WriteLine();

            Console.Write("    [AddableLinked] Traversal: ");
            addableLinked.Stepper(i => Console.Write(i));
            Console.WriteLine();

            Console.WriteLine("    [AddableLinked] Count: " + addableLinked.Count);

            addableLinked.Clear(); // Clears the addable

            Console.WriteLine();

            #endregion

            #region FirstInLastOut (aka stack)
            {
                Console.WriteLine("  FirstInLastOut---------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An \"FirstInLastOut\" is a Stack that implements");
                Console.WriteLine("    Towel.DataStructures.DataStructure. \"FirstInLastOutArray\" is");
                Console.WriteLine("    the array implementation while \"FirstInLastOutLinked\" is the");
                Console.WriteLine("    the linked-list implementation. A FirstInLastOut/Stack is used");
                Console.WriteLine("    specifically when you need the algorithm provided by the Push");
                Console.WriteLine("    and Pop functions.");
                Console.WriteLine();

                IFirstInLastOut <int> firstInLastOutArray = new FirstInLastOutArray <int>();

                Console.Write("    [FirstInLastOutArray] Pushing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    firstInLastOutArray.Push(i);
                }
                Console.WriteLine();

                Console.Write("    [FirstInLastOutArray] Traversal: ");
                firstInLastOutArray.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop());
                Console.WriteLine("    [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop());
                Console.WriteLine("    [FirstInLastOutArray] Peek: " + firstInLastOutArray.Peek());
                Console.WriteLine("    [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop());
                Console.WriteLine("    [FirstInLastOutArray] Count: " + firstInLastOutArray.Count);

                firstInLastOutArray.Clear(); // Clears the firstInLastOut

                Console.WriteLine();

                IFirstInLastOut <int> firstInLastOutLinked = new FirstInLastOutLinked <int>();

                Console.Write("    [FirstInLastOutLinked] Pushing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    firstInLastOutLinked.Push(i);
                }
                Console.WriteLine();

                Console.Write("    [FirstInLastOutLinked] Traversal: ");
                firstInLastOutLinked.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop());
                Console.WriteLine("    [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop());
                Console.WriteLine("    [FirstInLastOutLinked] Peek: " + firstInLastOutLinked.Peek());
                Console.WriteLine("    [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop());
                Console.WriteLine("    [FirstInLastOutLinked] Count: " + firstInLastOutLinked.Count);

                firstInLastOutLinked.Clear(); // Clears the firstInLastOut

                Console.WriteLine();
            }
            #endregion

            #region FirstInFirstOut (aka Queue)
            {
                Console.WriteLine("  FirstInFirstOut---------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An \"FirstInFirstOut\" is a Queue that implements");
                Console.WriteLine("    Towel.DataStructures.DataStructure. \"FirstInFirstOutArray\" is");
                Console.WriteLine("    the array implementation while \"FirstInFirstOutLinked\" is the");
                Console.WriteLine("    the linked-list implementation. A FirstInFirstOut/Stack is used");
                Console.WriteLine("    specifically when you need the algorithm provided by the Queue");
                Console.WriteLine("    and Dequeue functions.");
                Console.WriteLine();

                IFirstInFirstOut <int> firstInFirstOutArray = new FirstInFirstOutArray <int>();

                Console.Write("    [FirstInFirstOutArray] Enqueuing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    firstInFirstOutArray.Enqueue(i);
                }
                Console.WriteLine();

                Console.Write("    [FirstInFirstOutArray] Traversal: ");
                firstInFirstOutArray.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue());
                Console.WriteLine("    [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue());
                Console.WriteLine("    [FirstInFirstOutArray] Peek: " + firstInFirstOutArray.Peek());
                Console.WriteLine("    [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue());
                Console.WriteLine("    [FirstInFirstOutArray] Count: " + firstInFirstOutArray.Count);

                firstInFirstOutArray.Clear(); // Clears the firstInLastOut

                Console.WriteLine();

                IFirstInFirstOut <int> firstInFirstOutLinked = new FirstInFirstOutLinked <int>();

                Console.Write("    [FirstInFirstOutLinked] Enqueuing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    firstInFirstOutLinked.Enqueue(i);
                }
                Console.WriteLine();

                Console.Write("    [FirstInFirstOutLinked] Traversal: ");
                firstInFirstOutLinked.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue());
                Console.WriteLine("    [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue());
                Console.WriteLine("    [FirstInFirstOutLinked] Peek: " + firstInFirstOutLinked.Peek());
                Console.WriteLine("    [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue());
                Console.WriteLine("    [FirstInFirstOutLinked] Count: " + firstInFirstOutLinked.Count);

                firstInFirstOutLinked.Clear(); // Clears the firstInLastOut

                Console.WriteLine();
            }
            #endregion

            #region Heap
            {
                Console.WriteLine("  Heap---------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An \"Heap\" is a binary tree that stores items based on priorities.");
                Console.WriteLine("    It implements Towel.DataStructures.DataStructure like the others.");
                Console.WriteLine("    It uses sifting algorithms to move nodes vertically through itself.");
                Console.WriteLine("    It is often the best data structure for standard priority queues.");
                Console.WriteLine("    \"HeapArray\" is an implementation where the tree has been flattened");
                Console.WriteLine("    into an array.");
                Console.WriteLine();

                Console.WriteLine("    Let's say the priority is how close a number is to \"5\".");
                Console.WriteLine("    So \"Dequeue\" will give us the next closest value to \"5\".");
                Comparison Priority(int a, int b)
                {
                    int        _a         = Compute.AbsoluteValue(a - 5);
                    int        _b         = Compute.AbsoluteValue(b - 5);
                    Comparison comparison = Compare.Wrap(_b.CompareTo(_a));

                    return(comparison);
                }

                Console.WriteLine();

                IHeap <int> heapArray = new HeapArray <int>(Priority);

                Console.Write("    [HeapArray] Enqueuing (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    heapArray.Enqueue(i);
                }
                Console.WriteLine();

                Console.WriteLine("    [HeapArray] Dequeue: " + heapArray.Dequeue());
                Console.WriteLine("    [HeapArray] Dequeue: " + heapArray.Dequeue());
                Console.WriteLine("    [HeapArray] Peek: " + heapArray.Peek());
                Console.WriteLine("    [HeapArray] Dequeue: " + heapArray.Dequeue());
                Console.WriteLine("    [HeapArray] Count: " + heapArray.Count);

                heapArray.Clear(); // Clears the heapArray

                Console.WriteLine();
            }
            #endregion

            #region Tree

            //Console.WriteLine("  Tree-----------------------------");

            //Tree<int> tree_Map = new TreeMap<int>(0, Compute.Equal, Hash.Default);

            //for (int i = 1; i < test; i++)
            //{
            //    tree_Map.Add(i, i / Compute.SquareRoot(i));
            //}
            //Console.Write("    Children of 0 (root): ");
            //tree_Map.Children(0, (int i) => { Console.Write(i + " "); });
            //Console.WriteLine();
            //Console.Write("    Children of " + ((int)System.Math.Sqrt(test) - 1) + " (root): ");
            //tree_Map.Children(((int)System.Math.Sqrt(test) - 1), (int i) => { Console.Write(i + " "); });
            //Console.WriteLine();
            //Console.Write("    Traversal: ");
            //tree_Map.Stepper((int i) => { Console.Write(i + " "); });
            //Console.WriteLine();

            //Console.WriteLine();

            #endregion

            #region AVL Tree
            {
                Console.WriteLine("  AvlTree------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An AVL Tree is a sorted binary tree.");
                Console.WriteLine("    It implements Towel.DataStructures.DataStructure like the others.");
                Console.WriteLine("    It allows for very fast 1D ranged queries/traversals.");
                Console.WriteLine("    It is very similar to an Red Black tree, but uses a different sorting algorithm.");
                Console.WriteLine();

                IAvlTree <int> avlTree = new AvlTreeLinked <int>();

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    avlTree.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                avlTree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                //// Note: Because the nodes in AVL Tree linked do not have
                //// a parent pointer, the IEnumerable "foreach" iteration
                //// is extremely slow and should be avoided. It requires
                //// a stack for it's iteration.
                //
                //Console.Write("    Traversal Foreach: ");
                //foreach (int i in avlTree)
                //{
                //    Console.Write(i);
                //}
                //Console.WriteLine();

                int minimum = random.Next(1, test / 2);
                int maximum = random.Next(1, test / 2) + test / 2;
                Console.Write("    Ranged Traversal [" + minimum + "-" + maximum + "]: ");
                avlTree.Stepper(i => Console.Write(i), minimum, maximum);
                Console.WriteLine();

                int removal = random.Next(0, test);
                Console.Write("    Remove(" + removal + "): ");
                avlTree.Remove(removal);
                avlTree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int contains = random.Next(0, test);
                Console.WriteLine("    Contains(" + contains + "): " + avlTree.Contains(contains));
                Console.WriteLine("    Current Least: " + avlTree.CurrentLeast);
                Console.WriteLine("    Current Greatest: " + avlTree.CurrentGreatest);
                Console.WriteLine("    Count: " + avlTree.Count);

                avlTree.Clear(); // Clears the AVL tree

                Console.WriteLine();
            }
            #endregion

            #region Red-Black Tree
            {
                Console.WriteLine("  Red-Black Tree------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An Red-Black Tree is a sorted binary tree.");
                Console.WriteLine("    It implements Towel.DataStructures.DataStructure like the others.");
                Console.WriteLine("    It allows for very fast 1D ranged queries/traversals.");
                Console.WriteLine("    It is very similar to an AVL tree, but uses a different sorting algorithm.");
                Console.WriteLine();

                IRedBlackTree <int> redBlackTree = new RedBlackTreeLinked <int>();

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    redBlackTree.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                redBlackTree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int minimum = random.Next(1, test / 2);
                int maximum = random.Next(1, test / 2) + test / 2;
                Console.Write("    Ranged Traversal [" + minimum + "-" + maximum + "]: ");
                redBlackTree.Stepper(i => Console.Write(i), minimum, maximum);
                Console.WriteLine();

                int removal = random.Next(0, test);
                Console.Write("    Remove(" + removal + "): ");
                redBlackTree.Remove(removal);
                redBlackTree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int contains = random.Next(0, test);
                Console.WriteLine("    Contains(" + contains + "): " + redBlackTree.Contains(contains));
                Console.WriteLine("    Current Least: " + redBlackTree.CurrentLeast);
                Console.WriteLine("    Current Greatest: " + redBlackTree.CurrentGreatest);
                Console.WriteLine("    Count: " + redBlackTree.Count);

                redBlackTree.Clear(); // Clears the Red Black tree

                Console.WriteLine();
            }
            #endregion

            #region BTree
            {
                Console.WriteLine("  B Tree------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A B Tree is a sorted binary tree that allows multiple values to");
                Console.WriteLine("    be stored per node. This makes it sort of a hybrid between a");
                Console.WriteLine("    binary tree and an array. Because multiple values are stored ");
                Console.WriteLine("    per node, it means less nodes must be traversed to completely");
                Console.WriteLine("    traverse the values in the B tree.");
                Console.WriteLine();

                Console.WriteLine("    The generic B Tree in Towel is still in development.");

                Console.WriteLine();
            }
            #endregion

            #region Set
            {
                Console.WriteLine("  Set------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A Set is like an Addable/List, but it does not allow duplicates. Sets are");
                Console.WriteLine("    usually implemented using hash codes. Implementations with hash codes");
                Console.WriteLine("    usually have very fast \"Contains\" checks to see if a value has already");
                Console.WriteLine("    been added to the set.");
                Console.WriteLine();

                ISet <int> setHashLinked = new SetHashLinked <int>();

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    setHashLinked.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                setHashLinked.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int a = random.Next(0, test);
                setHashLinked.Remove(a);
                Console.Write("    Remove(" + a + "): ");
                setHashLinked.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int b = random.Next(0, test);
                Console.WriteLine("    Contains(" + b + "): " + setHashLinked.Contains(b));
                Console.WriteLine("    Count: " + setHashLinked.Count);

                Console.WriteLine();
            }
            #endregion

            #region Map (aka Dictionary)
            {
                Console.WriteLine("  Map------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A Map (aka Dictionary) is similar to a Set, but it stores two values (a ");
                Console.WriteLine("    key and a value). Maps do not allow duplicate keys much like Sets don't");
                Console.WriteLine("    allow duplicate values. When provided with the key, the Map uses that key");
                Console.WriteLine("    to look up the value that it is associated with. Thus, it allows you to ");
                Console.WriteLine("    \"map\" one object to another. As with Sets, Maps are usually implemented");
                Console.WriteLine("    using hash codes.");
                Console.WriteLine();

                // Note: the first generic is the value, the second is the key
                IMap <string, int> mapHashLinked = new MapHashLinked <string, int>();

                Console.WriteLine("    Let's map each int to its word representation (ex 1 -> One).");

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    mapHashLinked.Add(i, ((decimal)i).ToEnglishWords());
                }
                Console.WriteLine();

                Console.WriteLine("    Traversal: ");
                mapHashLinked.Keys(i => Console.WriteLine("      " + i + "->" + mapHashLinked[i]));
                Console.WriteLine();

                int a = random.Next(0, test);
                mapHashLinked.Remove(a);
                Console.Write("    Remove(" + a + "): ");
                mapHashLinked.Keys(i => Console.Write(i));
                Console.WriteLine();

                int b = random.Next(0, test);
                Console.WriteLine("    Contains(" + b + "): " + mapHashLinked.Contains(b));
                Console.WriteLine("    Count: " + mapHashLinked.Count);

                Console.WriteLine();
            }
            #endregion

            #region OmnitreePoints
            {
                Console.WriteLine("  OmnitreePoints--------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An Omnitree is an ND SPT that allows for");
                Console.WriteLine("    multidimensional sorting. Any time you need to look");
                Console.WriteLine("    items up based on multiple fields/properties, then");
                Console.WriteLine("    you might want to use an Omnitree. If you need to");
                Console.WriteLine("    perform ranged queries on multiple dimensions, then");
                Console.WriteLine("    the Omnitree is the data structure for you.");
                Console.WriteLine();
                Console.WriteLine("    The \"OmnitreePoints\" stores individual points (vectors),");
                Console.WriteLine("    and the \"OmnitreeBounds\" stores bounded objects (spaces).");
                Console.WriteLine();

                IOmnitreePoints <int, double, string, decimal> omnitree =
                    new OmnitreePointsLinked <int, double, string, decimal>(
                        // This is a location delegate. (how to locate the item along each dimension)
                        (int index, out double a, out string b, out decimal c) =>
                {
                    a = index;
                    b = index.ToString();
                    c = index;
                });

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    omnitree.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                omnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int    minimumXZ = random.Next(1, test / 2);
                int    maximumXZ = random.Next(1, test / 2) + test / 2;
                string minimumY  = minimumXZ.ToString();
                string maximumY  = maximumXZ.ToString();
                Console.Write("    Spacial Traversal [" +
                              "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" +
                              "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: ");
                omnitree.Stepper(i => Console.Write(i),
                                 minimumXZ, maximumXZ,
                                 minimumY, maximumY,
                                 minimumXZ, maximumXZ);
                Console.WriteLine();

                // Note: this "look up" is just a very narrow spacial query that (since we know the data)
                // wil only give us one result.
                int    lookUp         = random.Next(0, test);
                string lookUpToString = lookUp.ToString();
                Console.Write("    Look Up (" + lookUp + ", \"" + lookUpToString + "\", " + lookUp + "): ");
                omnitree.Stepper(i => Console.Write(i),
                                 lookUp, lookUp,
                                 lookUp.ToString(), lookUp.ToString(),
                                 lookUp, lookUp);
                Console.WriteLine();

                // Ignoring dimensions on traversals example.
                // If you want to ignore a column on a traversal, you can do so like this:
                omnitree.Stepper(i => { /*Do Nothing*/ },
                                 lookUp, lookUp,
                                 Omnitree.Bound <string> .None, Omnitree.Bound <string> .None,
                                 Omnitree.Bound <decimal> .None, Omnitree.Bound <decimal> .None);

                Console.Write("    Counting Items In a Space [" +
                              "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" +
                              "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: ");
                omnitree.CountSubSpace(
                    minimumXZ, maximumXZ,
                    minimumY, maximumY,
                    minimumXZ, maximumXZ);
                Console.WriteLine();

                int    removalMinimum  = random.Next(1, test / 2);
                int    removalMaximum  = random.Next(1, test / 2) + test / 2;
                string removalMinimumY = removalMinimum.ToString();
                string removalMaximumY = removalMaximum.ToString();
                Console.Write("    Remove (" + removalMinimum + "-" + removalMaximum + "): ");
                omnitree.Remove(
                    removalMinimum, removalMaximum,
                    removalMinimumY, removalMaximumY,
                    removalMinimum, removalMaximum);
                omnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    Dimensions: " + omnitree.Dimensions);
                Console.WriteLine("    Count: " + omnitree.Count);

                omnitree.Clear(); // Clears the Omnitree

                Console.WriteLine();
            }
            #endregion

            #region OmnitreeBounds
            {
                Console.WriteLine("  OmnitreeBounds--------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    An Omnitree is an ND SPT that allows for");
                Console.WriteLine("    multidimensional sorting. Any time you need to look");
                Console.WriteLine("    items up based on multiple fields/properties, then");
                Console.WriteLine("    you might want to use an Omnitree. If you need to");
                Console.WriteLine("    perform ranged queries on multiple dimensions, then");
                Console.WriteLine("    the Omnitree is the data structure for you.");
                Console.WriteLine();
                Console.WriteLine("    The \"OmnitreePoints\" stores individual points (vectors),");
                Console.WriteLine("    and the \"OmnitreeBounds\" stores bounded objects (spaces).");
                Console.WriteLine();

                IOmnitreeBounds <int, double, string, decimal> omnitree =
                    new OmnitreeBoundsLinked <int, double, string, decimal>(
                        // This is a location delegate. (how to locate the item along each dimension)
                        (int index,
                         out double min1, out double max1,
                         out string min2, out string max2,
                         out decimal min3, out decimal max3) =>
                {
                    string indexToString = index.ToString();

                    min1 = index; max1 = index;
                    min2 = indexToString; max2 = indexToString;
                    min3 = index; max3 = index;
                });

                Console.Write("    Adding (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    omnitree.Add(i);
                }
                Console.WriteLine();

                Console.Write("    Traversal: ");
                omnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                int    minimumXZ = random.Next(1, test / 2);
                int    maximumXZ = random.Next(1, test / 2) + test / 2;
                string minimumY  = minimumXZ.ToString();
                string maximumY  = maximumXZ.ToString();
                Console.Write("    Spacial Traversal [" +
                              "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" +
                              "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: ");
                omnitree.StepperOverlapped(i => Console.Write(i),
                                           minimumXZ, maximumXZ,
                                           minimumY, maximumY,
                                           minimumXZ, maximumXZ);
                Console.WriteLine();

                // Note: this "look up" is just a very narrow spacial query that (since we know the data)
                // wil only give us one result.
                int    lookUpXZ = random.Next(0, test);
                string lookUpY  = lookUpXZ.ToString();
                Console.Write("    Look Up (" + lookUpXZ + ", \"" + lookUpY + "\", " + lookUpXZ + "): ");
                omnitree.StepperOverlapped(i => Console.Write(i),
                                           lookUpXZ, lookUpXZ,
                                           lookUpY, lookUpY,
                                           lookUpXZ, lookUpXZ);
                Console.WriteLine();

                // Ignoring dimensions on traversals example.
                // If you want to ignore a dimension on a traversal, you can do so like this:
                omnitree.StepperOverlapped(i => { /*Do Nothing*/ },
                                           lookUpXZ, lookUpXZ,
                                           // The "None" means there is no bound, so all values are valid
                                           Omnitree.Bound <string> .None, Omnitree.Bound <string> .None,
                                           Omnitree.Bound <decimal> .None, Omnitree.Bound <decimal> .None);

                Console.Write("    Counting Items In a Space [" +
                              "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" +
                              "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: " +
                              omnitree.CountSubSpaceOverlapped(
                                  minimumXZ, maximumXZ,
                                  minimumY, maximumY,
                                  minimumXZ, maximumXZ));
                Console.WriteLine();

                int    removalMinimumXZ = random.Next(1, test / 2);
                int    removalMaximumXZ = random.Next(1, test / 2) + test / 2;
                string removalMinimumY  = removalMinimumXZ.ToString();
                string removalMaximumY  = removalMaximumXZ.ToString();
                Console.Write("    Remove (" + removalMinimumXZ + "-" + removalMaximumXZ + "): ");
                omnitree.RemoveOverlapped(
                    removalMinimumXZ, removalMaximumXZ,
                    removalMinimumY, removalMaximumY,
                    removalMinimumXZ, removalMaximumXZ);
                omnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    Dimensions: " + omnitree.Dimensions);
                Console.WriteLine("    Count: " + omnitree.Count);

                omnitree.Clear(); // Clears the Omnitree

                Console.WriteLine();
            }
            #endregion

            #region KD Tree
            {
                Console.WriteLine("  KD Tree------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A KD Tree binary tree that stores points sorted along along an");
                Console.WriteLine("    arbitrary number of dimensions. So it performs multidimensional");
                Console.WriteLine("    sorting similar to the Omnitree (Quadtree/Octree) in Towel, but");
                Console.WriteLine("    it uses a completely different algorithm and format.");
                Console.WriteLine();

                Console.WriteLine("    The generic KD Tree in Towel is still in development.");

                Console.WriteLine();
            }
            #endregion

            #region Graph
            {
                Console.WriteLine("  Graph------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A Graph is a data structure of nodes and edges. Nodes are values");
                Console.WriteLine("    and edges are connections between those values. Graphs are often");
                Console.WriteLine("    used to model real world data such as maps, and are often used in");
                Console.WriteLine("    path finding algoritms. See the \"Algorithms\" example for path");
                Console.WriteLine("    finding examples. This is just an example of how to make a graph.");
                Console.WriteLine("    A \"GraphSetOmnitree\" is an implementation where nodes are stored.");
                Console.WriteLine("    in a Set and edges are stored in an Omnitree (aka Quadtree).");
                Console.WriteLine();

                IGraph <int> graphSetOmnitree = new GraphSetOmnitree <int>();

                Console.WriteLine("    Adding Nodes (0-" + (test - 1) + ")...");
                for (int i = 0; i < test; i++)
                {
                    graphSetOmnitree.Add(i);
                }

                int edgesPerNode = 3;
                Console.WriteLine("    Adding Random Edges (0-3 per node)...");
                for (int i = 0; i < test; i++)
                {
                    // lets use a heap to randomize the edges using random priorities
                    IHeap <(int, int)> heap = new HeapArray <(int, int)>((x, y) => Compare.Wrap(x.Item2.CompareTo(y.Item2)));
                    for (int j = 0; j < test; j++)
                    {
                        if (j != i)
                        {
                            heap.Enqueue((j, random.Next()));
                        }
                    }

                    // dequeue some random edges from the heap and add them to the graph
                    int randomEdgeCount = random.Next(edgesPerNode + 1);
                    for (int j = 0; j < randomEdgeCount; j++)
                    {
                        graphSetOmnitree.Add(i, heap.Dequeue().Item1);
                    }
                }

                Console.Write("    Nodes (Traversal): ");
                graphSetOmnitree.Stepper(i => Console.Write(i));
                Console.WriteLine();

                Console.WriteLine("    Edges (Traversal): ");
                graphSetOmnitree.Stepper((from, to) => Console.WriteLine("      " + from + "->" + to));
                Console.WriteLine();

                int a = random.Next(0, test);
                Console.Write("    Neighbors (" + a + "):");
                graphSetOmnitree.Neighbors(a, i => Console.Write(" " + i));
                Console.WriteLine();

                int b = random.Next(0, test / 2);
                int c = random.Next(test / 2, test);
                Console.WriteLine("    Are Adjacent (" + b + ", " + c + "): " + graphSetOmnitree.Adjacent(b, c));
                Console.WriteLine("    Node Count: " + graphSetOmnitree.NodeCount);
                Console.WriteLine("    Edge Count: " + graphSetOmnitree.EdgeCount);

                graphSetOmnitree.Clear(); // Clears the graph

                Console.WriteLine();
            }
            #endregion

            #region Trie
            {
                Console.WriteLine("  Trie------------------------------------------------");
                Console.WriteLine();
                Console.WriteLine("    A Trie is a tree where portions of the data are stored in each node");
                Console.WriteLine("    such that when you traverse the tree to a leaf, you have read the contents");
                Console.WriteLine("    of that leaf along the way. Because of this, a Trie allows for its values");
                Console.WriteLine("    to share data, which is a form of compression. So a Trie may be used to save");
                Console.WriteLine("    memory. A trie may also be a very useful tool in pattern matching, because it");
                Console.WriteLine("    it allows for culling based are portions of the data.");
                Console.WriteLine();

                Console.WriteLine("    The generic Trie in Towel is still in development.");

                Console.WriteLine();
            }
            #endregion

            Console.WriteLine("============================================");
            Console.WriteLine("Examples Complete...");
            Console.ReadLine();
        }
Esempio n. 7
0
    IEnumerator Search(Vector3 beginning, Vector3 end)
    {
        HeapArray <State> openSet = new HeapArray <State>(gridMap.LargestSize);
        State             goal    = gridMap.RetrieveState(end);
        State             start   = gridMap.RetrieveState(beginning);

        openSet.Enqueue(start);

        HashSet <State> cameFrom = new HashSet <State>();

        Vector3[] intermediates = new Vector3[0];

        bool foundPath = false;

        while (openSet.Count > 0)
        {
            State present = openSet.Dequeue();
            cameFrom.Add(present);

            if (present == goal)
            {
                foundPath     = true;
                intermediates = ReconstructPath(start, goal);
                break;
            }
            else
            {
                List <State> adjacents = gridMap.RetrieveAdjacentStates(present);
                foreach (State s in adjacents)
                {
                    if (cameFrom.Contains(s) || !(s.unblocked))
                    {
                        continue;
                    }
                    else
                    {
                        int yWeight    = Mathf.Abs(present.yCoordinate - s.yCoordinate);
                        int xWeight    = Mathf.Abs(present.xCoordinate - s.xCoordinate);
                        int edgeWeight = 0;
                        if (xWeight < yWeight)
                        {
                            edgeWeight = 10 * (yWeight - xWeight) + 14 * xWeight;
                        }
                        else
                        {
                            edgeWeight = 10 * (xWeight - yWeight) + 14 * yWeight;
                        }
                        int tentativeCost = present.gOfN + edgeWeight;


                        if (!(openSet.Contains(s)) || tentativeCost < s.gOfN)
                        {
                            s.parent = present;
                            s.gOfN   = tentativeCost;
                            yWeight  = Mathf.Abs(s.yCoordinate - goal.yCoordinate);
                            xWeight  = Mathf.Abs(s.xCoordinate - goal.xCoordinate);
                            if (xWeight < yWeight)
                            {
                                s.hOfN = 10 * (yWeight - xWeight) + 14 * xWeight;
                            }
                            else
                            {
                                s.hOfN = 10 * (xWeight - yWeight) + 14 * yWeight;
                            }

                            if (!openSet.Contains(s))
                            {
                                openSet.Enqueue(s);
                            }
                            else
                            {
                                openSet.UpdateState(s);
                            }
                        }
                    }
                }
            }
        }
        yield return(null);

        searchHandler.FinishedPresentSearch(intermediates, foundPath);
    }