internal void GaussianOpQ_Timing()
        {
            Gaussian X, Mean;
            Gamma    Precision;
            Gamma    q;
            int      n = 1;

            X         = Gaussian.FromNatural(3.9112579392580757, 11.631097473681082);
            Mean      = Gaussian.FromNatural(10.449696977834144, 5.5617978202886995);
            Precision = Gamma.FromShapeAndRate(1.0112702817305146, 0.026480506235719053);
            q         = Gamma.FromMeanAndVariance(1, 1);
            Stopwatch watch = new Stopwatch();

            watch.Start();
            for (int i = 0; i < n; i++)
            {
                GaussianOp_Laplace.Q(X, Mean, Precision, q);
            }
            watch.Stop();
            Console.WriteLine("Q = {0}", watch.ElapsedTicks);
            watch.Restart();
            for (int i = 0; i < n; i++)
            {
                GaussianOp_Laplace.Q_Slow(X, Mean, Precision);
            }
            watch.Stop();
            Console.WriteLine("Q2 = {0}", watch.ElapsedTicks);
        }
Esempio n. 2
0
        internal void StudentIsPositiveTest4()
        {
            double shape     = 1;
            Gamma  precPrior = Gamma.FromShapeAndRate(shape, shape);
            // mean=-1 causes improper messages
            double   mean      = -1;
            Gaussian meanPrior = Gaussian.PointMass(mean);
            double   evExpected;
            Gaussian xExpected = StudentIsPositiveExact(mean, precPrior, out evExpected);

            GaussianOp.ForceProper       = false;
            GaussianOp_Laplace.modified  = true;
            GaussianOp_Laplace.modified2 = true;
            Gaussian xF = Gaussian.Uniform();
            Gaussian xB = Gaussian.Uniform();
            Gamma    q  = GaussianOp_Laplace.QInit();
            double   r0 = 0.38;

            r0 = 0.1;
            for (int iter = 0; iter < 20; iter++)
            {
                q = GaussianOp_Laplace.Q(xB, meanPrior, precPrior, q);
                //xF = GaussianOp_Laplace.SampleAverageConditional(xB, meanPrior, precPrior, q);
                xF = Gaussian.FromMeanAndPrecision(mean, r0);
                xB = IsPositiveOp.XAverageConditional(true, xF);
                Console.WriteLine("xF = {0} xB = {1}", xF, xB);
            }
            Console.WriteLine("x = {0} should be {1}", xF * xB, xExpected);

            double[] precs     = EpTests.linspace(1e-3, 5, 100);
            double[] evTrue    = new double[precs.Length];
            double[] evApprox  = new double[precs.Length];
            double[] evApprox2 = new double[precs.Length];
            //r0 = q.GetMean();
            double sum = 0, sum2 = 0;

            for (int i = 0; i < precs.Length; i++)
            {
                double   r   = precs[i];
                Gaussian xFt = Gaussian.FromMeanAndPrecision(mean, r);
                evTrue[i]    = IsPositiveOp.LogAverageFactor(true, xFt) + precPrior.GetLogProb(r);
                evApprox[i]  = IsPositiveOp.LogAverageFactor(true, xF) + precPrior.GetLogProb(r) + xB.GetLogAverageOf(xFt) - xB.GetLogAverageOf(xF);
                evApprox2[i] = IsPositiveOp.LogAverageFactor(true, xF) + precPrior.GetLogProb(r0) + q.GetLogProb(r) - q.GetLogProb(r0);
                sum         += System.Math.Exp(evApprox[i]);
                sum2        += System.Math.Exp(evApprox2[i]);
            }
            Console.WriteLine("r0 = {0}: {1} {2} {3}", r0, sum, sum2, q.GetVariance() + System.Math.Pow(r0 - q.GetMean(), 2));
            //TODO: change path for cross platform using
            using (var writer = new MatlabWriter(@"..\..\..\Tests\student.mat"))
            {
                writer.Write("z", evTrue);
                writer.Write("z2", evApprox);
                writer.Write("z3", evApprox2);
                writer.Write("precs", precs);
            }
        }