Esempio n. 1
0
        public void FunctionTest()
        {
            Gaussian       dense  = new Gaussian(3.6);
            SparseGaussian target = new SparseGaussian(3.6);

            double[] sx = { 1, -0.555556, 2, +0.250000, 3, -0.864407, 4, -0.916667 };
            double[] sy = { 1, -0.666667, 2, -0.166667, 3, -0.864407, 4, -0.916667 };
            double[] sz = { 1, -0.944444, 3, -0.898305, 4, -0.916667 };

            double[] dx = { -0.555556, +0.250000, -0.864407, -0.916667 };
            double[] dy = { -0.666667, -0.166667, -0.864407, -0.916667 };
            double[] dz = { -0.944444, +0.000000, -0.898305, -0.916667 };

            double expected, actual;

            expected = dense.Function(dx, dy);
            actual   = target.Function(sx, sy);
            Assert.AreEqual(expected, actual);

            expected = dense.Function(dx, dz);
            actual   = target.Function(sx, sz);
            Assert.AreEqual(expected, actual);

            expected = dense.Function(dy, dz);
            actual   = target.Function(sy, sz);
            Assert.AreEqual(expected, actual);
        }
Esempio n. 2
0
        public void FunctionTest_EqualInputs()
        {
            var x = new double[] { 1, 2, 5, 1 };
            var y = new double[] { 1, 2, 5, 1 };

            var target = new Gaussian <DynamicTimeWarping>(new DynamicTimeWarping(1), 4.2);

            double expected = target.Function(x, y);
            double actual   = target.Function(x, x);

            Assert.AreEqual(expected, actual, 0.000001);
        }
Esempio n. 3
0
        public void FunctionTest_EqualInputs()
        {
            var x = new double[] { 1, 2, 5, 1 };
            var y = new double[] { 1, 2, 5, 1 };

            var target = new Gaussian <Linear>(new Linear(1), 4.2);

            double expected = target.Function(x, y);
            double actual   = target.Function(x, x);

            Assert.AreEqual(expected, actual);
        }
Esempio n. 4
0
        public void KernelFunctionCacheConstructorTest6()
        {
            IKernel kernel = new Gaussian(0.6);

            int cacheSize = inputs.Length;

            KernelFunctionCache target = new KernelFunctionCache(kernel, inputs, cacheSize);

            Assert.AreEqual(10, target.Size);
            Assert.AreEqual(0, target.Hits);
            Assert.AreEqual(0, target.Misses);
            Assert.IsTrue(target.Enabled);

            for (int i = 0; i < inputs.Length; i++)
            {
                double expected = kernel.Function(inputs[i], inputs[i]);
                double actual   = target.GetOrCompute(i);

                Assert.AreEqual(expected, actual);
            }

            Assert.AreEqual(0, target.Hits);


            for (int i = 0; i < inputs.Length; i++)
            {
                for (int j = 0; j < inputs.Length; j++)
                {
                    double expected = kernel.Function(inputs[i], inputs[j]);
                    double actual   = target.GetOrCompute(i, j);

                    Assert.AreEqual(expected, actual);
                }
            }

            for (int i = 0; i < inputs.Length; i++)
            {
                for (int j = 0; j < inputs.Length; j++)
                {
                    double expected = kernel.Function(inputs[i], inputs[j]);
                    double actual   = target.GetOrCompute(i, j);

                    Assert.AreEqual(expected, actual);
                }
            }

            Assert.AreEqual(0, target.Misses);
            Assert.AreEqual(0, target.Hits);
            Assert.AreEqual(0, target.Usage);
        }
Esempio n. 5
0
        public void FunctionTest()
        {
            double sigma = 0.1;
            var target = new Gaussian<Linear>(new Linear(0), sigma);
            double[] x = { 2.0, 3.1, 4.0 };
            double[] y = { 2.0, 3.1, 4.0 };
            double expected = 1;
            double actual;

            actual = target.Function(x, y);
            Assert.AreEqual(expected, actual);

            actual = target.Function(x, x);
            Assert.AreEqual(expected, actual);

            actual = target.Function(y, y);
            Assert.AreEqual(expected, actual);
        }
Esempio n. 6
0
        public void FunctionTest2()
        {
            // Tested against R's kernlab

            double[][] data =
            {
                new double[] { 5.1, 3.5, 1.4, 0.2 },
                new double[] { 5.0, 3.6, 1.4, 0.2 },
                new double[] { 4.9, 3.0, 1.4, 0.2 },
                new double[] { 5.8, 4.0, 1.2, 0.2 },
                new double[] { 4.7, 3.2, 1.3, 0.2 },
            };

            // rbf <- rbfdot(sigma = 1)

            // R's sigma is framework's Gaussian's gamma:
            Gaussian kernel = new Gaussian()
            {
                Gamma = 1
            };

            // Compute the kernel matrix
            double[,] actual = new double[5, 5];
            for (int i = 0; i < 5; i++)
            {
                for (int j = 0; j < 5; j++)
                {
                    actual[i, j] = kernel.Function(data[i], data[j]);
                }
            }

            double[,] expected =
            {
                { 1.0000000, 0.9801987, 0.7482636, 0.4584060, 0.7710516 },
                { 0.9801987, 1.0000000, 0.6907343, 0.4317105, 0.7710516 },
                { 0.7482636, 0.6907343, 1.0000000, 0.1572372, 0.9139312 },
                { 0.4584060, 0.4317105, 0.1572372, 1.0000000, 0.1556726 },
                { 0.7710516, 0.7710516, 0.9139312, 0.1556726, 1.0000000 },
            };

            // Assert both are equal
            for (int i = 0; i < 5; i++)
            {
                for (int j = 0; j < 5; j++)
                {
                    Assert.AreEqual(expected[i, j], actual[i, j], 1e-6);
                }
            }
        }
Esempio n. 7
0
        public void rbf_kernel()
        {
            #region doc_rbf
            // Let's say we created a Gaussian RBF kernel:
            IRadialBasisKernel rbf = new Gaussian(sigma: 3.6);

            // Normally, kernel functions are always defined
            // between two points. For example, if we were to
            // compute the Gaussian kernel between points
            double[] x = { 1, 3 };
            double[] y = { 4, 2 };

            // The most straightforward way would be to use
            double k = rbf.Function(x, y); // should be 0.6799048146023815

            // However, since this kernel is a RBF, it means we
            // can also compute its kernel function through the
            // Euclidean distance between the two points:
            double z = Distance.Euclidean(x, y);
            double a = rbf.Function(z); // should also be 0.6799048146023815
            #endregion

            Assert.AreEqual(k, a);
        }
        public void FunctionTest2()
        {
            double[][] data =
            {
                new double[] { 5.1, 3.5, 1.4, 0.2 },
                new double[] { 5.0, 3.6, 1.4, 0.2 },
                new double[] { 4.9, 3.0, 1.4, 0.2 },
                new double[] { 5.8, 4.0, 1.2, 0.2 },
                new double[] { 4.7, 3.2, 1.3, 0.2 },
            };

            var kernel = new Gaussian <SquareEuclidean>(new SquareEuclidean())
            {
                Gamma = 1
            };

            // Compute the kernel matrix
            double[,] actual = new double[5, 5];
            for (int i = 0; i < 5; i++)
            {
                for (int j = 0; j < 5; j++)
                {
                    actual[i, j] = kernel.Function(data[i], data[j]);
                }
            }

            double[,] expected =
            {
                { 1.0000000, 0.9801987, 0.7482636, 0.4584060, 0.7710516 },
                { 0.9801987, 1.0000000, 0.6907343, 0.4317105, 0.7710516 },
                { 0.7482636, 0.6907343, 1.0000000, 0.1572372, 0.9139312 },
                { 0.4584060, 0.4317105, 0.1572372, 1.0000000, 0.1556726 },
                { 0.7710516, 0.7710516, 0.9139312, 0.1556726, 1.0000000 },
            };

            // Assert both are equal
            for (int i = 0; i < 5; i++)
            {
                for (int j = 0; j < 5; j++)
                {
                    Assert.AreEqual(expected[i, j], actual[i, j], 1e-6);
                }
            }
        }
        public void doc_test_generic()
        {
            #region doc_distance_generic
            // Let's say we would like to create a composite Gaussian
            // kernel based on a Hamming distance defined for strings:
            var gaussian = new Gaussian <Hamming, string>(new Hamming(), sigma: 4.2);

            string x = "abba";
            string y = "aaab";

            // Now, we can compute the kernel function as:
            double k = gaussian.Function(x, y); // 0.8436074263840595

            // We can also obtain the distance in kernel space as:
            double d = gaussian.Distance(x, y); // 0.312785147231881
            #endregion

            Assert.AreEqual(0.8436074263840595, k, 1e-10);
            Assert.AreEqual(0.312785147231881, d, 1e-10);
        }
Esempio n. 10
0
        public void doc_test_generic()
        {
            #region doc_kernel_generic
            // Let's say we would like to create a composite Gaussian
            // kernel based on the String Subsequence Kernel (SSK):
            var gaussian = new Gaussian <StringSubsequence, string>(
                new StringSubsequence(k: 2), sigma: 4.2);

            string x = "abba";
            string y = "aaab";

            // Now, we can compute the kernel function as:
            double k = gaussian.Function(x, y); // 0.97588765410825273

            // We can also obtain the distance in kernel space as:
            double d = gaussian.Distance(x, y); // 0.048224691783494533
            #endregion

            Assert.AreEqual(0.97588765410825273, k, 1e-10);
            Assert.AreEqual(0.048224691783494533, d, 1e-10);
        }
Esempio n. 11
0
        public void GaussianFunctionTest()
        {
            var x = new double[] { 0, 4, 2, 1 };
            var y = new double[] { 3, 2, };

            var     dtw      = new DynamicTimeWarping(1);
            IKernel gaussian = new Gaussian <DynamicTimeWarping>(dtw, 1);

            double actual = gaussian.Function(x, y);

            Assert.AreEqual(0.3407192298459587, actual);


            gaussian = new Gaussian <DynamicTimeWarping>(dtw, 11.5);

            x = new double[] { 0.2, 5 };
            y = new double[] { 3, 0.7 };

            actual = gaussian.Function(x, y);

            Assert.AreEqual(0.99065918303292089, actual);
        }
Esempio n. 12
0
        public void GaussianFunctionTest()
        {
            IKernel gaussian = new Gaussian <Linear>(new Linear(0), 1);

            double[] x = { 1, 1 };
            double[] y = { 1, 1 };

            double actual   = gaussian.Function(x, y);
            double expected = 1;

            Assert.AreEqual(expected, actual);


            gaussian = new Gaussian(11.5);

            x = new double[] { 0.2, 5 };
            y = new double[] { 3, 0.7 };

            actual   = gaussian.Function(x, y);
            expected = 0.9052480234;

            Assert.AreEqual(expected, actual, 1e-10);
        }
Esempio n. 13
0
        public void doc_test()
        {
            #region doc_kernel
            // Let's say we would like to create a composite Gaussian kernel
            // based on an underlying Polynomial kernel of the second degree
            var gaussian = new Gaussian <Polynomial>(new Polynomial(degree: 2), sigma: 4.2);

            double[] x = { 2, 4 };
            double[] y = { 1, 3 };

            // Now, we can compute the kernel function as:
            double k = gaussian.Function(x, y); // 0.041810692337960746

            // We can also obtain the distance in kernel space as:
            double d = gaussian.Distance(x, y); // 1.9163786153240785

            // Whereas the Euclidean distance in input space would be:
            double e = Distance.Euclidean(x, y); // 1.4142135623730952
            #endregion

            Assert.AreEqual(0.041810692337960746, k, 1e-10);
            Assert.AreEqual(1.9163786153240785, d, 1e-10);
            Assert.AreEqual(1.4142135623730952, e, 1e-10);
        }
Esempio n. 14
0
        public void doc_test()
        {
            #region doc_distance
            // Let's say we would like to create a composite
            // Gaussian kernel based on an Euclidean distance:
            var gaussian = new Gaussian <Euclidean>(new Euclidean(), sigma: 4.2);

            double[] x = { 2, 4 };
            double[] y = { 1, 3 };

            // Now, we can compute the kernel function as:
            double k = gaussian.Function(x, y); // 0.96070737352744806

            // We can also obtain the distance in kernel space as:
            double d = gaussian.Distance(x, y); // 0.078585252945103878

            // Whereas the Euclidean distance in input space would be:
            double e = Distance.Euclidean(x, y); // 1.4142135623730952
            #endregion

            Assert.AreEqual(0.96070737352744806, k, 1e-10);
            Assert.AreEqual(0.078585252945103878, d, 1e-10);
            Assert.AreEqual(1.4142135623730952, e, 1e-10);
        }