/// <summary>
        /// Provides the graph of the minimal value between this graph and another graph
        /// </summary>
        /// <param name="other"></param>
        /// <returns></returns>
        public static FlatSpeedDistanceCurve Min(FlatSpeedDistanceCurve left, FlatSpeedDistanceCurve right)
        {
            /* Here goes the result */
            FlatSpeedDistanceCurve result = new FlatSpeedDistanceCurve();

            /* Early exit to avoid accessing unexisting elements */
            if (left.SegmentCount == 0)
            {
                for (int i = 0; i < right.SegmentCount; i++)
                    result.Add(right[i].X.X0, right[i].X.X1, right[i].Y);
                return result;
            }
            if (right.SegmentCount == 0)
            {
                for (int i = 0; i < left.SegmentCount; i++)
                    result.Add(left[i].X.X0, left[i].X.X1, left[i].Y);
                return result;
            }

            /* We collect all x positions */
            List<SiDistance> x_positions = new List<SiDistance>();

            /* Collect all X positions from left */
            x_positions.Add(left[0].X.X0);
            for (int i = 0; i < left.SegmentCount; i++)
                x_positions.Add(left[i].X.X1);

            /* Collect all X positions from right */
            x_positions.Add(right[0].X.X0);
            for (int i = 0; i < right.SegmentCount; i++)
                x_positions.Add(right[i].X.X1);

            x_positions.Sort(CompareDistances);

            for (int i = 1; i < x_positions.Count; i++)
            {
                SiDistance x0 = x_positions[i - 1];
                SiDistance x1 = x_positions[i];

                /* Caution GetSegmentAt might return null */
                ConstantCurveSegment<SiDistance, SiSpeed> left_segment = left.GetSegmentAt(x0);
                ConstantCurveSegment<SiDistance, SiSpeed> right_segment = right.GetSegmentAt(x0);

                if (left_segment == null)
                {
                    result.Add(x0, x1, right_segment.Y);
                }
                else if (right_segment == null)
                {
                    result.Add(x0, x1, left_segment.Y);
                }
                else
                {
                    result.Add(x0, x1, SiSpeed.Min(left_segment.Y, right_segment.Y));
                }
            }

            return result;
        }
 public MiddleData()
 {
     MRSP = new FlatSpeedDistanceCurve();
     MA = new FlatSpeedDistanceCurve();
     TSR = new FlatSpeedDistanceCurve();
 }
        public static QuadraticSpeedDistanceCurve Build_A_Safe_Backward(AccelerationSpeedDistanceSurface A_V_D, FlatSpeedDistanceCurve MRSP)
        {
            if (debug)
            {
                Log.InfoFormat("#######################################################");
                Log.InfoFormat("## Build_A_Safe_Backward_Surface#######################");
                Log.InfoFormat("#######################################################");
            }

            int debugging_counter = 0;
            QuadraticSpeedDistanceCurve result = new QuadraticSpeedDistanceCurve();

            /***********************************************************
              The ending point is the first point in the MRSP
             ***********************************************************/
            SiDistance end_position = MRSP[0].X.X0;

            /***********************************************************
              Go forward in the MRSP until we find the point with
              minimal speed. This shall be our starting point
              **********************************************************/
            SiDistance current_position = SiDistance.Zero;
            SiSpeed current_speed = SiSpeed.MaxValue;

            if (debug)
                Log.DebugFormat("  Search the position of the minimal speed in the MRSP");
            for (int i = 0; i < MRSP.SegmentCount; i++)
            {
                ConstantCurveSegment<SiDistance, SiSpeed> segment = MRSP[i];
                if (segment.Y < current_speed)
                {
                    current_speed = segment.Y;
                    current_position = segment.X.X1;

                    if (debug)
                        Log.DebugFormat("    new start position V={0,7:F2} at={1,7:F2} ", current_speed.ToUnits(), current_position.ToUnits());
                }
            }

            if (debug)
                Log.DebugFormat("    end position is at={0,7:F2} ", end_position.ToUnits());

            /*************************************************************************/
            /* Starting from the right side of curves, go back to the left side.     */
            /* Build small curves arcs where the acceleration is constant on each one*/
            /*************************************************************************/
            while (current_position > end_position)
            {
                if (debug)
                {
                    Log.DebugFormat("#######################################################");
                    Log.DebugFormat("### Loop {0}  #########################################", debugging_counter);
                    Log.DebugFormat("#######################################################");
                }

                /************************************************************
                  Based on current speed and position, search on wich tile
                  of A_V_D tile we are
                  ***********************************************************/
                SurfaceTile current_tile = A_V_D.GetTileAt(current_speed + new SiSpeed(0.01), current_position - new SiDistance(0.1));
                SiAcceleration current_acceleration = current_tile.V.Y;

                /***************************************************************************/
                /* If at previous loop wi did 'hit' the vertical part of the MRSP,
                   we might have a speed above the current MRSP segment.*/
                /***************************************************************************/
                if (current_speed > MRSP.GetValueAt(current_position - new SiDistance(0.1)))
                {
                    current_speed = MRSP.GetValueAt(current_position - new SiDistance(0.1));
                }

                /*******************************************************************
                  We build a quadratic arc with current train position, speed
                  and acceleration. The arc domain [0..current_position] is not valid yet.
                  We must find out the domain left limit.
                 *****************************************************************/
                QuadraticCurveSegment current_curve = new QuadraticCurveSegment(SiDistance.Zero,
                                                                                 current_position,
                                                                                 current_acceleration,
                                                                                 current_speed,
                                                                                 current_position);

                if (debug)
                {
                    Log.DebugFormat("  current_acceleration = {0,7:F2} from a_tile {1}", current_acceleration.ToUnits(), current_tile.ToString());
                    Log.DebugFormat("  current_speed        = {0,7:F2} ", current_speed.ToUnits());
                    Log.DebugFormat("  current_position     = {0,7:F2} ", current_position.ToUnits());

                    Log.DebugFormat("  --> current_curve    = {0} ", current_curve.ToString());
                }

                /********************************************************************/
                /* The current_curve may 'hit' one of these 4 items:
                     1) The upper border of the tile (because of a new acceleration)
                     2) The left border of the tile (because of a gradient?)
                     3) A vertical segment of the MRSP
                     4) An horizontal segment of the MRSP
                   Text all of them and update the next_position accordingly.
                *************************************************************************/
                SiDistance next_position = SiDistance.Zero;

                /* 1) The distance at wich our temporary arc intersects the top (V2) segment of the AVD tile */
                {
                    SiDistance d = current_curve.IntersectAt(current_tile.V.X.X1);
                    if (debug)
                        Log.DebugFormat("  intersection with tile (V_TOP) at {0,7:F2} ", d.ToUnits());
                    if (d >= next_position)
                    {
                        if (debug)
                            Log.DebugFormat("  --> case_1  next_position {0,7:F2} -> {1,7:F2}", next_position.ToUnits(), d.ToUnits());
                        next_position = d;
                    }
                }

                /* 2) The distance at wich our temporary arc intersects the left (D0) segment of the AVD tile */
                {
                    SiDistance d = current_tile.D.X.X0;
                    if (debug)
                        Log.DebugFormat("  intersection with tile (D0)    at {0,7:F2} ", d.ToUnits());
                    if (d >= next_position)
                    {
                        if (debug)
                            Log.DebugFormat("  --> case_2  next_position {0,7:F2} -> {1,7:F2}", next_position.ToUnits(), d.ToUnits());
                        next_position = d;
                    }
                }

                /*Since the MRSP is continous, the following cannot fail. */
                ConstantCurveSegment<SiDistance, SiSpeed> speed_limit_here = MRSP.Intersect(current_position - new SiDistance(0.1), current_curve);
                if (debug)
                    Log.DebugFormat("  MRSP segment          {0} ", speed_limit_here.ToString());

                /* 3) Do we hit the vertical segment of the MRSP ? */
                {
                    if (speed_limit_here.X.X0 >= next_position)
                    {
                        if (debug)
                            Log.DebugFormat("  --> case_3  next_position {0,7:F2} -> {1,7:F2}", next_position.ToUnits(), speed_limit_here.X.X0.ToUnits());
                        next_position = speed_limit_here.X.X0;
                    }
                }

                /* 4) Do we hit the horizontal segment of the MRSP */
                {
                    if (current_speed + new SiSpeed(0.01) < speed_limit_here.Y)
                    {
                        SiDistance d = current_curve.IntersectAt(speed_limit_here.Y);
                        if (d >= next_position)
                        {
                            if (debug)
                                Log.DebugFormat("  --> case_4a next_d        {0,7:F2} -> {1,7:F2}", next_position.ToUnits(), d.ToUnits());
                            next_position = d;
                        }
                    }
                    else
                    {
                        if (debug)
                            Log.DebugFormat("  --> case_4b next_acc_0    {0,7:F2} -> {1,7:F2}", next_position.ToUnits(), speed_limit_here.X.X0.ToUnits());
                        current_acceleration = SiAcceleration.Zero;
                        next_position = speed_limit_here.X.X0;
                    }
                }

                /* Finally we can add the segment because next_position has been computed. */
                result.Add(next_position, current_position, current_acceleration, current_speed, current_position);

                result.Dump("result so far ");

                /* Next loop starts from our new position.
                   We do not need to update current_acceleration because
                   it is done at the beginning of the loop*/
                current_position = next_position;
                current_speed = result.GetValueAt(current_position);

                /*************************************************************/
                /* If this exception is thrown, you'd better call Juan       */
                /*************************************************************/
                if (debugging_counter++ > 200)
                {
                    throw new Exception("Algorithm is broken");
                }
            }

            return result;
        }
        /// <summary>
        ///     Method used to get the full EBD and SBD curves from the MRSP
        /// </summary>
        /// <param name="A_V_D"></param>
        /// <param name="MRSP"></param>
        /// <returns></returns>
        public static QuadraticSpeedDistanceCurve Build_A_Safe_Backward(AccelerationSpeedDistanceSurface A_V_D,
            FlatSpeedDistanceCurve MRSP)
        {
            debugging_counter = 0;

            if (debug)
            {
                Log.InfoFormat("#######################################################");
                Log.InfoFormat("## Build_A_Safe_Backward_Surface#######################");
                Log.InfoFormat("#######################################################");
            }

            QuadraticSpeedDistanceCurve result = new QuadraticSpeedDistanceCurve();

            /***********************************************************
              The ending point is the first point in the MRSP
             ***********************************************************/
            SiDistance end_position = MRSP[0].X.X0;

            /***********************************************************
              Go forward in the MRSP until we find the point with
              minimal speed. This shall be our starting point
              **********************************************************/
            SiDistance current_position = SiDistance.Zero;
            SiSpeed current_speed = SiSpeed.MaxValue;

            if (debug)
                Log.DebugFormat("  Search the position of the minimal speed in the MRSP");
            for (int i = 0; i < MRSP.SegmentCount; i++)
            {
                ConstantCurveSegment<SiDistance, SiSpeed> segment = MRSP[i];
                if (segment.Y < current_speed)
                {
                    current_speed = segment.Y;
                    current_position = segment.X.X1;

                    if (debug)
                        Log.DebugFormat("    new start position V={0,7:F2} at={1,7:F2} ", current_speed.ToUnits(),
                            current_position.ToUnits());
                }
            }

            if (debug)
                Log.DebugFormat("    end position is at={0,7:F2} ", end_position.ToUnits());

            SiDistance next_position = SiDistance.Zero;

            /*************************************************************************/
            /* Starting from the right side of curves, go back to the left side.     */
            /* Build small curves arcs where the acceleration is constant on each one*/
            /*************************************************************************/
            while (current_position > end_position)
            {
                Compute_Curve(A_V_D, result, MRSP, ref current_position, ref next_position, ref current_speed,
                    BrakingCurveDirectionEnum.Backwards);

                /* Next loop starts from our new position.
                   We do not need to update current_acceleration because
                   it is done at the beginning of the loop*/
                current_position = next_position;
                current_speed = result.GetValueAt(current_position, BrakingCurveDirectionEnum.Backwards);

                /*************************************************************/
                /* If this exception is thrown, you'd better call Juan       */
                /*************************************************************/
                if (debugging_counter++ > 200)
                {
                    throw new Exception("Algorithm is broken");
                }
            }

            return result;
        }
        /// <summary>
        ///     Computes the curve from a point
        /// </summary>
        /// <param name="A_V_D"></param>
        /// <param name="result"></param>
        /// <param name="mrsp"></param>
        /// <param name="current_position"></param>
        /// <param name="next_position"></param>
        /// <param name="current_speed"></param>
        /// <param name="dir"></param>
        private static void Compute_Curve(AccelerationSpeedDistanceSurface A_V_D,
            QuadraticSpeedDistanceCurve result,
            FlatSpeedDistanceCurve mrsp,
            ref SiDistance current_position,
            ref SiDistance next_position,
            ref SiSpeed current_speed,
            BrakingCurveDirectionEnum dir)
        {
            int Direction = Get_Direction(dir);

            SiSpeed speed_step = (-1)*Direction*minimal_speed_threshold;
            SiDistance distance_step = Direction*minimal_distance_threshold;

            if (debug)
            {
                Log.DebugFormat("#######################################################");
                Log.DebugFormat("### Loop {0}  #########################################", debugging_counter);
                Log.DebugFormat("#######################################################");
            }

            /************************************************************
              Based on current speed and position, search on wich tile
              of A_V_D tile we are
              ***********************************************************/
            SurfaceTile current_tile = A_V_D.GetTileAt(current_speed + speed_step, current_position + distance_step);

            /***************************************************************************/
            /* If at previous loop wi did 'hit' the vertical part of the MRSP,
               we might have a speed above the current MRSP segment.*/
            /***************************************************************************/
            if (current_speed >
                mrsp.GetValueAt(current_position - minimal_distance_threshold, BrakingCurveDirectionEnum.Backwards))
            {
                current_speed = mrsp.GetValueAt(current_position - minimal_distance_threshold,
                    BrakingCurveDirectionEnum.Backwards);
            }

            /*******************************************************************
              We build a quadratic arc with current train position, speed
              and acceleration. The arc domain [0..current_position] is not valid yet.
              We must find out the domain left limit.
             *****************************************************************/
            QuadraticCurveSegment current_curve = Build_One_Curve_Segment(current_tile, current_position, current_speed,
                mrsp, dir);

            next_position = Distance_Edge(current_curve, dir);
            SiAcceleration current_acceleration = current_curve.A;

            /* Finally we can add the segment because next_position has been computed. */
            SiDistance refLocation = current_curve.X.X0;
            SiSpeed refSpeed = current_curve.Get(refLocation);
            result.Add(current_curve.X.X0, current_curve.X.X1, current_acceleration, refSpeed, refLocation);

            result.Dump("result so far ");
        }
        /// <summary>
        ///     Method to return the curve segment at the current location and speed, going in the specified direction.
        /// </summary>
        /// <param name="current_tile"></param>
        /// <param name="current_position"></param>
        /// <param name="current_speed"></param>
        /// <param name="MRSP"></param>
        /// <param name="dir"></param>
        /// <returns></returns>
        private static QuadraticCurveSegment Build_One_Curve_Segment(SurfaceTile current_tile,
            SiDistance current_position,
            SiSpeed current_speed,
            FlatSpeedDistanceCurve MRSP,
            BrakingCurveDirectionEnum dir)
        {
            SiAcceleration current_acceleration = current_tile.V.Y;
            SiDistance MRSP_end = MRSP[MRSP.SegmentCount - 1].X.X1;

            SiDistance curve_start = new SiDistance();
            SiDistance curve_end = new SiDistance();
            switch (dir)
            {
                case BrakingCurveDirectionEnum.Backwards:
                    curve_start = SiDistance.Zero;
                    curve_end = current_position;
                    break;
                case BrakingCurveDirectionEnum.Forwards:
                    curve_start = current_position;
                    curve_end = MRSP_end;
                    break;
            }

            QuadraticCurveSegment current_curve = new QuadraticCurveSegment(curve_start,
                curve_end,
                current_acceleration,
                current_speed,
                current_position);

            if (debug)
            {
                Log.DebugFormat("  current_acceleration = {0,7:F2} from a_tile {1}", current_acceleration.ToUnits(),
                    current_tile.ToString());
                Log.DebugFormat("  current_speed        = {0,7:F2} ", current_speed.ToUnits());
                Log.DebugFormat("  current_position     = {0,7:F2} ", current_position.ToUnits());

                Log.DebugFormat("  --> current_curve    = {0} ", current_curve.ToString());
            }

            /********************************************************************/
            /* The current_curve may 'hit' one of these 4 items:
                    1) The upper border of the tile (because of a new acceleration)
                    2) The left border of the tile (because of a gradient?)
                    3) A vertical segment of the MRSP
                    4) An horizontal segment of the MRSP
                Text all of them and update the next_position accordingly.
            *************************************************************************/
            SiDistance next_position = SiDistance.Zero;

            /* The distance at which our temporary arc intersects a segment of the AVD tile */
            {
                next_position = Tile_Intersect(current_position, current_tile, current_curve, dir);
            }

            /* The MRSP checks only need to be performed if the curve is being computed backwards */
            if (dir == BrakingCurveDirectionEnum.Backwards)
            {
                /*Since the MRSP is continous, the following cannot fail. */
                ConstantCurveSegment<SiDistance, SiSpeed> speed_limit_here =
                    MRSP.Intersect(current_position - new SiDistance(0.1), current_curve);
                if (debug)
                    Log.DebugFormat("  MRSP segment          {0} ", speed_limit_here.ToString());

                /* 3) Do we hit the vertical segment of the MRSP ? */
                {
                    next_position = IntersectMRSPSpeed(next_position, speed_limit_here);
                }

                /* 4) Do we hit the horizontal segment of the MRSP */
                {
                    if (current_speed + new SiSpeed(0.01) < speed_limit_here.Y)
                    {
                        SiDistance d = current_curve.IntersectAt(speed_limit_here.Y);
                        if (d >= next_position)
                        {
                            if (debug)
                                Log.DebugFormat("  --> case_4a next_d        {0,7:F2} -> {1,7:F2}",
                                    next_position.ToUnits(), d.ToUnits());
                            next_position = d;
                        }
                    }
                    else
                    {
                        if (debug)
                            Log.DebugFormat("  --> case_4b next_acc_0    {0,7:F2} -> {1,7:F2}", next_position.ToUnits(),
                                speed_limit_here.X.X0.ToUnits());
                        current_acceleration = SiAcceleration.Zero;
                        next_position = speed_limit_here.X.X0;
                    }
                }
            }

            SiDistance result_start = new SiDistance();
            SiDistance result_end = new SiDistance();

            switch (dir)
            {
                case BrakingCurveDirectionEnum.Backwards:
                    result_start = next_position;
                    result_end = current_position;
                    break;
                case BrakingCurveDirectionEnum.Forwards:
                    result_start = current_position;
                    result_end = next_position;
                    break;
            }

            QuadraticCurveSegment result = new QuadraticCurveSegment(result_start,
                result_end,
                current_acceleration,
                current_speed,
                current_position);

            return result;
        }
        /// <summary>
        ///     Builds a full deceleration curve corresponding to a given target(location, speed)
        /// </summary>
        /// <param name="A_V_D"></param>
        /// <param name="TargetSpeed"></param>
        /// <param name="TargetDistance"></param>
        /// <returns></returns>
        public static QuadraticSpeedDistanceCurve Build_Deceleration_Curve(AccelerationSpeedDistanceSurface A_V_D,
            SiSpeed TargetSpeed, SiDistance TargetDistance)
        {
            debugging_counter = 0;

            QuadraticSpeedDistanceCurve result = new QuadraticSpeedDistanceCurve();

            // Build a MRSP for this target
            FlatSpeedDistanceCurve mrsp = new FlatSpeedDistanceCurve();
            mrsp.Add(SiDistance.Zero, TargetDistance, new SiSpeed(400, SiSpeed_SubUnits.KiloMeter_per_Hour));
            mrsp.Add(TargetDistance, new SiDistance(20000), TargetSpeed);

            // Add to result by calculating backwards then forwards

            SiDistance current_position = TargetDistance;
            SiSpeed current_speed = TargetSpeed;
            BrakingCurveDirectionEnum dir = BrakingCurveDirectionEnum.Backwards;
            SiDistance next_position = SiDistance.Zero;

            SiDistance end_position = mrsp[0].X.X0;

            while (current_position > end_position)
            {
                Compute_Curve(A_V_D, result, mrsp, ref current_position, ref next_position, ref current_speed, dir);

                /* Next loop starts from our new position.
                   We do not need to update current_acceleration because
                   it is done at the beginning of the loop*/
                current_position = next_position;
                current_speed = result.GetValueAt(current_position, BrakingCurveDirectionEnum.Backwards);
            }

            current_position = TargetDistance;
            current_speed = TargetSpeed;
            dir = BrakingCurveDirectionEnum.Forwards;

            while (current_speed > minimal_speed_threshold)
            {
                Compute_Curve(A_V_D, result, mrsp, ref current_position, ref next_position, ref current_speed, dir);

                /* Next loop starts from our new position.
                   We do not need to update current_acceleration because
                   it is done at the beginning of the loop*/
                current_position = next_position;
                current_speed = result.GetValueAt(current_position, dir);
            }

            result.Add(current_position, mrsp[mrsp.SegmentCount - 1].X.X1, SiAcceleration.Zero, SiSpeed.Zero,
                current_position);

            return result;
        }
        /// <summary>
        /// Provides the graph of this function if it has been statically defined
        /// </summary>
        /// <param name="context">the context used to create the graph</param>
        /// <returns></returns>
        public override Graph createGraph(Interpreter.InterpretationContext context, Parameter parameter)
        {
            Graph retVal = null;

            Graph    MRSPGraph        = null;
            Function speedRestriction = context.findOnStack(SpeedRestrictions).Value as Function;

            if (speedRestriction != null)
            {
                Parameter p = (Parameter)speedRestriction.FormalParameters[0];

                int token = context.LocalScope.PushContext();
                context.LocalScope.setGraphParameter(p);
                MRSPGraph = createGraphForValue(context, context.findOnStack(SpeedRestrictions).Value, p);
                context.LocalScope.PopContext(token);
            }

            if (MRSPGraph != null)
            {
                Function deceleratorFactor = context.findOnStack(DecelerationFactor).Value as Function;
                if (deceleratorFactor != null)
                {
                    Surface DecelerationSurface = deceleratorFactor.createSurface(context);
                    if (DecelerationSurface != null)
                    {
                        FlatSpeedDistanceCurve           MRSPCurve           = MRSPGraph.FlatSpeedDistanceCurve(MRSPGraph.ExpectedEndX());
                        AccelerationSpeedDistanceSurface accelerationSurface = DecelerationSurface.createAccelerationSpeedDistanceSurface(double.MaxValue, double.MaxValue);
                        QuadraticSpeedDistanceCurve      BrakingCurve        = null;
                        try
                        {
                            BrakingCurve = EtcsBrakingCurveBuilder.Build_A_Safe_Backward(accelerationSurface, MRSPCurve);
                        }
                        catch (System.Exception e)
                        {
                            retVal = new Graph();
                            retVal.addSegment(new Graph.Segment(0, double.MaxValue, new Graph.Segment.Curve(0, 0, 0)));
                        }

                        if (BrakingCurve != null)
                        {
                            retVal = new Graph();

                            // TODO : Remove the distinction between linear curves and quadratic curves
                            bool isLinear = true;
                            for (int i = 0; i < BrakingCurve.SegmentCount; i++)
                            {
                                QuadraticCurveSegment segment = BrakingCurve[i];
                                if (segment.A.ToUnits() != 0.0 || segment.V0.ToUnits() != 0.0)
                                {
                                    isLinear = false;
                                    break;
                                }
                            }

                            for (int i = 0; i < BrakingCurve.SegmentCount; i++)
                            {
                                QuadraticCurveSegment segment = BrakingCurve[i];

                                Graph.Segment newSegment;
                                if (isLinear)
                                {
                                    newSegment = new Graph.Segment(
                                        segment.X.X0.ToUnits(),
                                        segment.X.X1.ToUnits(),
                                        new Graph.Segment.Curve(0.0, segment.V0.ToSubUnits(SiSpeed_SubUnits.KiloMeter_per_Hour), 0.0));
                                }
                                else
                                {
                                    newSegment = new Graph.Segment(
                                        segment.X.X0.ToUnits(),
                                        segment.X.X1.ToUnits(),
                                        new Graph.Segment.Curve(
                                            segment.A.ToSubUnits(SiAcceleration_SubUnits.Meter_per_SecondSquare),
                                            segment.V0.ToSubUnits(SiSpeed_SubUnits.KiloMeter_per_Hour),
                                            segment.D0.ToSubUnits(SiDistance_SubUnits.Meter)
                                            )
                                        );
                                }
                                retVal.addSegment(newSegment);
                            }
                        }
                    }
                    else
                    {
                        Log.Error("Cannot create surface for " + DecelerationFactor.ToString());
                    }
                }
                else
                {
                    Log.Error("Cannot evaluate " + DecelerationFactor.ToString() + " as a function");
                }
            }
            else
            {
                Log.Error("Cannot create graph for " + SpeedRestrictions.ToString());
            }

            return(retVal);
        }
        public void Build_A_Safe_BackwardTestMethod()
        {
            // TODO : Fill the acceleration surface
            AccelerationSpeedDistanceSurface acceleration = new AccelerationSpeedDistanceSurface();

            for (int i = 0; i < 5; i++)
            {
                double StartDistance = i*1000;
                double EndDistance = StartDistance + 1000;

                for (int j = 0; j < 4; j++)
                {
                    double StartSpeed = j*60;
                    double EndSpeed = StartSpeed + 60;

                    acceleration.Tiles.Add(new SurfaceTile(
                        new SiDistance(StartDistance),
                        new SiDistance(EndDistance),
                        new SiSpeed(StartSpeed, SiSpeed_SubUnits.KiloMeter_per_Hour),
                        new SiSpeed(EndSpeed, SiSpeed_SubUnits.KiloMeter_per_Hour),
                        new SiAcceleration(-(0.5 + (i - j)/8))
                        ));
                }
            }

            // TODO : Fill the mrsp
            FlatSpeedDistanceCurve mrsp = new FlatSpeedDistanceCurve();
            mrsp.AddSegment(new ConstantCurveSegment<SiDistance, SiSpeed>(
                new SiDistance(0),
                new SiDistance(650),
                new SiSpeed(80, SiSpeed_SubUnits.KiloMeter_per_Hour)
                ));
            mrsp.AddSegment(new ConstantCurveSegment<SiDistance, SiSpeed>(
                new SiDistance(650),
                new SiDistance(1500),
                new SiSpeed(60, SiSpeed_SubUnits.KiloMeter_per_Hour)
                ));
            mrsp.AddSegment(new ConstantCurveSegment<SiDistance, SiSpeed>(
                new SiDistance(1500),
                new SiDistance(2500),
                new SiSpeed(120, SiSpeed_SubUnits.KiloMeter_per_Hour)
                ));
            mrsp.AddSegment(new ConstantCurveSegment<SiDistance, SiSpeed>(
                new SiDistance(2500),
                new SiDistance(4000),
                new SiSpeed(55, SiSpeed_SubUnits.KiloMeter_per_Hour)
                ));
            mrsp.AddSegment(new ConstantCurveSegment<SiDistance, SiSpeed>(
                new SiDistance(4000),
                new SiDistance(5000),
                new SiSpeed(0)
                ));

            // Compute the deceleration curve using the previous algorithm
            QuadraticSpeedDistanceCurve deceleration =
                EtcsBrakingCurveBuilder_Obsolete.Build_A_Safe_Backward(acceleration, mrsp);

            // Compute the deceleration curve using the new algorithm
            // TODO : Implement the new algorithm and use it
            QuadraticSpeedDistanceCurve deceleration2 = EtcsBrakingCurveBuilder.Build_A_Safe_Backward(acceleration, mrsp);

            TestOutput = new StringBuilder();

            // Compare the deceleration curves
            for (double d = 0.0; d < 5000.0; d += 1)
            {
                Assert.AreEqual(
                    deceleration.GetValueAt(new SiDistance(0.0 + d), BrakingCurveDirectionEnum.Backwards),
                    deceleration2.GetValueAt(new SiDistance(0.0 + d), BrakingCurveDirectionEnum.Backwards),
                    "Value at " + d + " should be equal"
                    );
                TestOutput.Append(d.ToString());
                TestOutput.Append("\t");
                TestOutput.Append(mrsp.GetValueAt(new SiDistance(d), BrakingCurveDirectionEnum.Backwards).Value);
                TestOutput.Append("\t");
                TestOutput.Append(deceleration.GetValueAt(new SiDistance(d), BrakingCurveDirectionEnum.Backwards).Value);
                TestOutput.Append("\t");
                TestOutput.Append(deceleration2.GetValueAt(new SiDistance(d), BrakingCurveDirectionEnum.Backwards).Value);
                TestOutput.Append("\n");
            }
            File.WriteAllText("ResultsCompare.csv", TestOutput.ToString());
        }
 /************************************************************************/
 public void AddCurve(FlatSpeedDistanceCurve aCurve, string Name, string color)
 {
     PlottedItem p = new PlottedItem();
     p.theCurve = aCurve;
     p.theName = Name;
     p.theColor = color;
     Items.Add(p);
 }