Esempio n. 1
0
        DenseVector FitLeastSquaresBasis(double[] xdata, double[] ydata, FitFunction basis, int deg = 1)
        {
            var X = MakeBasis(xdata, basis, deg);
            var Y = new DenseVector(ydata);
            var A = (DenseMatrix)X.Transpose() * X;
            var B = (DenseVector)(X.Transpose() * Y);
            var W = (DenseVector)(A.Solve(B));

            return(W);
        }
Esempio n. 2
0
        DenseMatrix MakeBasis(double[] xdata, FitFunction basis, int deg)
        {
            int n       = xdata.Length;
            int columns = 0;

            if (basis == FitFunction.polynomial)
            {
                columns = deg + 1;
            }
            else if (basis == FitFunction.noroozi)
            {
                columns = 3;
            }
            var X = new DenseMatrix(n, columns);

            switch (basis)
            {
            case FitFunction.polynomial:
                for (int j = 0; j <= deg; j++)
                {
                    for (int i = 0; i < n; i++)
                    {
                        X[i, j] = Math.Pow(xdata[i], j);
                    }
                }

                break;

            case FitFunction.noroozi:
                int t;
                t = 0;
                for (int i = 0; i < n; i++)
                {
                    X[i, 0] = Math.Pow(xdata[i], t);
                }
                t = 2;
                for (int i = 0; i < n; i++)
                {
                    X[i, 1] = Math.Pow(xdata[i], t);
                }
                t = 6;
                for (int i = 0; i < n; i++)
                {
                    X[i, 2] = Math.Pow(xdata[i], t);
                }
                break;

            default:
                break;
            }

            return(X);
        }
Esempio n. 3
0
        double CalculatePerpendicularDistancePointToCurve(double[] xdata, double[] ydata, DenseVector W,
                                                          FitFunction basis, int deg, Graphics g)
        {
            const double stepSize = 0.01;
            double       minX     = xdata.Min() - 20;
            double       maxX     = xdata.Max() + 20;
            int          nCurve   = (int)((maxX - minX) / stepSize);
            int          n        = xdata.Length;

            double[] plotX = new double[nCurve];
            for (int i = 0; i < nCurve; i++)
            {
                plotX[i] = minX + i * stepSize;
            }
            var PlotX = MakeBasis(plotX, basis, deg);
            var PlotY = PlotX * W;

            double s = 0;

            for (int i = 0; i < n; i++)
            {
                double minDist  = double.MaxValue;
                int    minIndex = -1;

                for (int j = 0; j < nCurve; j++)
                {
                    var d = Math.Pow(xdata[i] - plotX[j], 2) + Math.Pow(ydata[i] - PlotY[j], 2);

                    if (d < minDist)
                    {
                        minDist  = d;
                        minIndex = j;
                    }
                }

                s += minDist; //sum of squared error

                //draw the perpendicular line
                g.DrawLine(new Pen(new SolidBrush(Color.Red)), new PointF((float)xdata[i] * 3, (float)ydata[i] * 3),
                           new PointF((float)plotX[minIndex] * 3, (float)PlotY[minIndex] * 3));
            }

            double error = Math.Sqrt(s / n); //root mean squared error

            return(error);
        }
Esempio n. 4
0
        void DrawCurve(Graphics g, DenseVector W, double minX, double maxX, FitFunction basis, int deg = 0)
        {
            const double stepSize = 0.1;
            int          n        = (int)((maxX - minX) / stepSize);

            double[] xdata = new double[n];
            for (int i = 0; i < n; i++)
            {
                xdata[i] = minX + stepSize * i;
            }
            var X = MakeBasis(xdata, basis, deg);
            var Y = X * W;

            for (int i = 0; i < n; i++)
            {
                DrawPoint2DOnControl(g, new PointF((float)xdata[i], (float)Y[i]), Color.Blue, 1);
            }
        }
Esempio n. 5
0
    /* central finite difference approximation to the jacobian of func */
    static void FDIF_CENT_JAC_APPROX(
      FitFunction func,
      /* function to differentiate */
      double[] p,              /* I: current parameter estimate, mx1 */
      double[] hxm,            /* W/O: work array for evaluating func(p-delta), nx1 */
      double[] hxp,            /* W/O: work array for evaluating func(p+delta), nx1 */
      double delta,           /* increment for computing the jacobian */
      double[] jac,            /* O: array for storing approximated jacobian, nxm */
      int m,
      int n,
      object adata)
    {
      int i, j;
      double tmp;
      double d;

      for(j=0; j<m; ++j)
      {
        /* determine d=max(1E-04*|p[j]|, delta), see HZ */
        d=(1E-04)*p[j]; // force evaluation
        d=(d);
        if(d<delta)
          d=delta;

        tmp=p[j];
        p[j]-=d;
        func(p, hxm, adata);

        p[j]=tmp+d;
        func(p, hxp, adata);
        p[j]=tmp; /* restore */

        d=(0.5)/d; /* invert so that divisions can be carried out faster as multiplications */
        for(i=0; i<n; ++i)
        {
          jac[i*m+j]=(hxp[i]-hxm[i])*d;
        }
      }
    }
Esempio n. 6
0
    static public int LEVMAR_DIF(
      FitFunction func, /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
      double [] p,         /* I/O: initial parameter estimates. On output has the estimated solution */
      double [] x,         /* I: measurement vector */
 
      int itmax,          /* I: maximum number of iterations */
      double[] opts,    /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
                       * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
                       * the step used in difference approximation to the jacobian. Set to NULL for defaults to be used.
                       * If \delta<0, the jacobian is approximated with central differences which are more accurate
                       * (but slower!) compared to the forward differences employed by default. 
                       */
      double[] info,
      /* O: information regarding the minimization. Set to NULL if don't care
                      * info[0]= ||e||_2 at initial p.
                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                      * info[5]= # iterations,
                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                      *                                 2 - stopped by small Dp
                      *                                 3 - stopped by itmax
                      *                                 4 - singular matrix. Restart from current p with increased mu 
                      *                                 5 - no further error reduction is possible. Restart with increased mu
                      *                                 6 - stopped by small ||e||_2
                      * info[7]= # function evaluations
                      * info[8]= # jacobian evaluations
                      */
      ref object workingmemory,     /* working memory, allocate if NULL */
      double[] covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
      object adata)       /* pointer to possibly additional data, passed uninterpreted to func.
                      * Set to NULL if not needed
                      */
    {

      int m = p.Length;              /* I: parameter vector dimension (i.e. #unknowns) */
      int n = x.Length;              /* I: measurement vector dimension */
      int i, j, k, l;

      bool issolved;
      /* temp work arrays */
      double[] e;          /* nx1 */
      double[] hx;         /* \hat{x}_i, nx1 */

      double[] jacTe;      /* J^T e_i mx1 */

      double[] jac;        /* nxm */

      double[] jacTjac;    /* mxm */

      double[] Dp;         /* mx1 */

      double[] diag_jacTjac;   /* diagonal of J^T J, mx1 */

      double[] pDp;        /* p + Dp, mx1 */

      double[] wrk;        /* nx1 */

      bool using_ffdif=true;
      double[] wrk2=null; /* nx1, used for differentiating with central differences only */

      double mu,  /* damping constant */
        tmp; /* mainly used in matrix & vector multiplications */
      double p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
      double p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
      double tau, eps1, eps2, eps2_sq, eps3, delta;
      double init_p_eL2;
      int nu, nu2, stop, nfev, njap=0, K=(m>=10)? m: 10, updjac;
      bool updp=true;
      bool  newjac;
      int nm=n*m;

      mu=jacTe_inf=p_L2=0.0; /* -Wall */
      stop = updjac = 0;  newjac = false; /* -Wall */

      if(n<m)
      {
        throw new ArithmeticException(string.Format("Cannot solve a problem with fewer measurements {0} than unknowns {1}", n, m));
      }

      if(opts!=null)
      {
        tau=opts[0];
        eps1=opts[1];
        eps2=opts[2];
        eps2_sq=opts[2]*opts[2];
        eps3=opts[3];
        delta=opts[4];
        if(delta<0.0)
        {
          delta=-delta; /* make positive */
          using_ffdif=false; /* use central differencing */
          wrk2 = new double[n];
        }
      }
      else
      { // use default values
        tau=LM_INIT_MU;
        eps1=LM_STOP_THRESH;
        eps2=LM_STOP_THRESH;
        eps2_sq=LM_STOP_THRESH*LM_STOP_THRESH;
        eps3=LM_STOP_THRESH;
        delta=LM_DIFF_DELTA;
      }

      WorkArrays work = workingmemory as WorkArrays;
      if(null==work)
      {
        work = new WorkArrays(n, m);
        workingmemory = work;
      }

      /* set up work arrays */
      e=work.e;
      hx = work.hx;
      jacTe = work.jacTe;
      jac = work.jac;
      jacTjac = work.jacTjac;
      Dp = work.Dp;
      diag_jacTjac = work.diag_jacTjac;
      pDp = work.pDp;
      wrk = work.wrk;
  
      /* compute e=x - f(p) and its L2 norm */
      func(p, hx, adata); nfev=1;
      for(i=0, p_eL2=0.0; i<n; ++i)
      {
        e[i]=tmp=x[i]-hx[i];
        p_eL2+=tmp*tmp;
      }
      init_p_eL2=p_eL2;

      nu=20; /* force computation of J */

      for(k=0; k<itmax; ++k)
      {
        /* Note that p and e have been updated at a previous iteration */

        if(p_eL2<=eps3)
        { /* error is small */
          stop=6;
          break;
        }

        /* Compute the jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
         * The symmetry of J^T J is again exploited for speed
         */

        if((updp && nu>16) || updjac==K)
        { /* compute difference approximation to J */
          if(using_ffdif)
          { /* use forward differences */
            FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata);
            ++njap; nfev+=m;
          }
          else
          { /* use central differences */
            FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata);
            ++njap; nfev+=2*m;
          }
          nu=2; updjac=0; updp=false; newjac=true;
        }

        if(newjac)
        { /* jacobian has changed, recompute J^T J, J^t e, etc */
          newjac=false;

          /* J^T J, J^T e */
          if(nm<=__BLOCKSZ__SQ)
          { // this is a small problem
            /* This is the straightforward way to compute J^T J, J^T e. However, due to
             * its noncontinuous memory access pattern, it incures many cache misses when
             * applied to large minimization problems (i.e. problems involving a large
             * number of free variables and measurements), in which J is too large to
             * fit in the L1 cache. For such problems, a cache-efficient blocking scheme
             * is preferable.
             *
             * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
             * performance problem.
             *
             * On the other hand, the straightforward algorithm is faster on small
             * problems since in this case it avoids the overheads of blocking. 
             */
      
            for(i=0; i<m; ++i)
            {
              for(j=i; j<m; ++j)
              {
                int lm;

                for(l=0, tmp=0.0; l<n; ++l)
                {
                  lm=l*m;
                  tmp+=jac[lm+i]*jac[lm+j];
                }

                jacTjac[i*m+j]=jacTjac[j*m+i]=tmp;
              }

              /* J^T e */
              for(l=0, tmp=0.0; l<n; ++l)
                tmp+=jac[l*m+i]*e[l];
              jacTe[i]=tmp;
            }
          }
          else
          { // this is a large problem
            /* Cache efficient computation of J^T J based on blocking
             */
            TRANS_MAT_MAT_MULT(jac, jacTjac, n, m, __BLOCKSZ__,null);

            /* cache efficient computation of J^T e */
            for(i=0; i<m; ++i)
              jacTe[i]=0.0;

            for(i=0; i<n; ++i)
            {
              int jacrow;

              for(l=0, jacrow=i*m, tmp=e[i]; l<m; ++l)
                jacTe[l]+=jac[l+jacrow]*tmp;
            }
          }
      
          /* Compute ||J^T e||_inf and ||p||^2 */
          for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i)
          {
            if(jacTe_inf < (tmp=Math.Abs(jacTe[i]))) jacTe_inf=tmp;

            diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
            p_L2+=p[i]*p[i];
          }
          //p_L2=sqrt(p_L2);
        }

#if false
if(!(k%100)){
  printf("Current estimate: ");
  for(i=0; i<m; ++i)
    printf("%.9g ", p[i]);
  printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
}
#endif

        /* check for convergence */
        if((jacTe_inf <= eps1))
        {
          Dp_L2=0.0; /* no increment for p in this case */
          stop=1;
          break;
        }

        /* compute initial damping factor */
        if(k==0)
        {
          for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
            if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
          mu=tau*tmp;
        }

        /* determine increment using adaptive damping */

        /* augment normal equations */
        for(i=0; i<m; ++i)
          jacTjac[i*m+i]+=mu;

        /* solve augmented equations */
#if HAVE_LAPACK
    /* 5 alternatives are available: LU, Cholesky, 2 variants of QR decomposition and SVD.
     * Cholesky is the fastest but might be inaccurate; QR is slower but more accurate;
     * SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed
     */

    issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
    //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m);
    //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m);
    //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m);
    //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m);
#else
        /* use the LU included with levmar */
        issolved=0!=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
#endif // HAVE_LAPACK 

        if(issolved)
        {
          /* compute p's new estimate and ||Dp||^2 */
          for(i=0, Dp_L2=0.0; i<m; ++i)
          {
            pDp[i]=p[i] + (tmp=Dp[i]);
            Dp_L2+=tmp*tmp;
          }
          //Dp_L2=sqrt(Dp_L2);

          if(Dp_L2<=eps2_sq*p_L2)
          { /* relative change in p is small, stop */
            //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
            stop=2;
            break;
          }

          if(Dp_L2>=(p_L2+eps2)/(EPSILON*EPSILON))
          { /* almost singular */
            //if(Dp_L2>=(p_L2+eps2)/CNST(EPSILON)){ /* almost singular */
            stop=4;
            break;
          }

          func(pDp, wrk, adata); ++nfev; /* evaluate function at p + Dp */
          for(i=0, pDp_eL2=0.0; i<n; ++i)
          { /* compute ||e(pDp)||_2 */
            tmp=x[i]-wrk[i];
            pDp_eL2+=tmp*tmp;
          }

          dF=p_eL2-pDp_eL2;
          if(updp || dF>0)
          { /* update jac */
            for(i=0; i<n; ++i)
            {
              for(l=0, tmp=0.0; l<m; ++l)
                tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */
              tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */
              for(j=0; j<m; ++j)
                jac[i*m+j]+=tmp*Dp[j];
            }
            ++updjac;
            newjac=true;
          }

          for(i=0, dL=0.0; i<m; ++i)
            dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);

          if(dL>0.0 && dF>0.0)
          { /* reduction in error, increment is accepted */
            dF=(2.0*dF/dL-1.0);
            tmp=dF*dF*dF;
            tmp=1.0-tmp*tmp*dF;
            mu=mu*( (tmp>=ONE_THIRD)? tmp : ONE_THIRD );
            nu=2;

            for(i=0 ; i<m; ++i) /* update p's estimate */
              p[i]=pDp[i];

            for(i=0; i<n; ++i)
            { /* update e, hx and ||e||_2 */
              e[i]=x[i]-wrk[i];
              hx[i]=wrk[i];
            }
            p_eL2=pDp_eL2;
            updp=true;
            continue;
          }
        }

        /* if this point is reached, either the linear system could not be solved or
         * the error did not reduce; in any case, the increment must be rejected
         */

        mu*=nu;
        nu2=nu<<1; // 2*nu;
        if(nu2<=nu)
        { /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
          stop=5;
          break;
        }
        nu=nu2;

        for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
          jacTjac[i*m+i]=diag_jacTjac[i];
      }

      if(k>=itmax) stop=3;

      for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
        jacTjac[i*m+i]=diag_jacTjac[i];

      if(info!=null)
      {
        info[0]=init_p_eL2;
        info[1]=p_eL2;
        info[2]=jacTe_inf;
        info[3]=Dp_L2;
        for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
          if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
        info[4]=mu/tmp;
        info[5]=(double)k;
        info[6]=(double)stop;
        info[7]=(double)nfev;
        info[8]=(double)njap;
      }

      /* covariance matrix */
      if(covar!=null)
      {
        LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
      }

      return (stop!=4)?  k : -1;
    }
Esempio n. 7
0
    /* 
 * This function seeks the parameter vector p that best describes the measurements vector x.
 * More precisely, given a vector function  func : R^m --> R^n with n>=m,
 * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
 * e=x-func(p) is minimized.
 *
 * This function requires an analytic jacobian. In case the latter is unavailable,
 * use LEVMAR_DIF() bellow
 *
 * Returns the number of iterations (>=0) if successfull, -1 if failed
 *
 * For more details, see H.B. Nielsen's (http://www.imm.dtu.dk/~hbn) IMM/DTU
 * tutorial at http://www.imm.dtu.dk/courses/02611/nllsq.pdf
 */

    public static int LEVMAR_DER(
      FitFunction  func, /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
      JacobianFunction jacf,  /* function to evaluate the jacobian \part x / \part p */ 
      double []p,         /* I/O: initial parameter estimates. On output has the estimated solution */
      double []x,         /* I: measurement vector */
      double []weights,   /* vector of the weights used to scale the fit differences, can be null */
         
      int itmax,          /* I: maximum number of iterations */
      double[] opts,    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
                       * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
                       */
      double[] info,
      /* O: information regarding the minimization. Set to NULL if don't care
                      * info[0]= ||e||_2 at initial p.
                      * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
                      * info[5]= # iterations,
                      * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
                      *                                 2 - stopped by small Dp
                      *                                 3 - stopped by itmax
                      *                                 4 - singular matrix. Restart from current p with increased mu 
                      *                                 5 - no further error reduction is possible. Restart with increased mu
                      *                                 6 - stopped by small ||e||_2
                      * info[7]= # function evaluations
                      * info[8]= # jacobian evaluations
                      */
      ref object workingmemory,     /* working memory, allocate if NULL */
      double[] covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
      object adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf.
                      * Set to NULL if not needed
                      */
    {
      int m = p.Length;  /* I: parameter vector dimension (i.e. #unknowns) */
      int n = x.Length;  /* I: measurement vector dimension */

      int i, j, k, l;
      int issolved;
      /* temp work arrays */
      double[] e,          /* nx1 */
        hx,         /* \hat{x}_i, nx1 */
        jacTe,      /* J^T e_i mx1 */
        jac,        /* nxm */
        jacTjac,    /* mxm */
        Dp,         /* mx1 */
        diag_jacTjac,   /* diagonal of J^T J, mx1 */
        pDp;        /* p + Dp, mx1 */

      double mu,  /* damping constant */
        tmp; /* mainly used in matrix & vector multiplications */
      double p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
      double p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
      double tau, eps1, eps2, eps2_sq, eps3;
      double init_p_eL2;
      int nu=2, nu2, stop, nfev, njev=0;
      int nm=n*m;

      mu=jacTe_inf=0.0; /* -Wall */

      if(n<m)
      {
        throw new ArithmeticException(string.Format("Cannot solve a problem with fewer measurements {0} than unknowns {1}", n, m));
      }

      if(null==jacf)
      {
        throw new ArgumentException("No function specified for computing the jacobian. If no such function is available, use LEVMAR_DIF instead");
      }

      if(null!=opts)
      {
        tau=opts[0];
        eps1=opts[1];
        eps2=opts[2];
        eps2_sq=opts[2]*opts[2];
        eps3=opts[3];
      }
      else
      { // use default values
        tau=(LM_INIT_MU);
        eps1=(LM_STOP_THRESH);
        eps2=(LM_STOP_THRESH);
        eps2_sq=(LM_STOP_THRESH)*(LM_STOP_THRESH);
        eps3=(LM_STOP_THRESH);
      }

  

      /* set up work arrays */
      WorkArrays work = workingmemory as WorkArrays;
      if(null==work)
      {
        work = new WorkArrays(n, m);
        workingmemory = work;
      }

      /* set up work arrays */
      e=work.e;
      hx = work.hx;
      jacTe = work.jacTe;
      jac = work.jac;
      jacTjac = work.jacTjac;
      Dp = work.Dp;
      diag_jacTjac = work.diag_jacTjac;
      pDp = work.pDp;
  

      /* compute e=x - f(p) and its L2 norm */
      func(p, hx, adata); nfev=1;
      if (weights == null)
      {
        for (i = 0, p_eL2 = 0.0; i < n; ++i)
        {
          e[i] = tmp = x[i] - hx[i];
          p_eL2 += tmp * tmp;
        }
      }
      else
      {
        for (i = 0, p_eL2 = 0.0; i < n; ++i)
        {
          e[i] = tmp = (x[i] - hx[i])*weights[i];
          p_eL2 += tmp * tmp;
        }
      }
      init_p_eL2=p_eL2;

      for(k=stop=0; k<itmax && 0==stop; ++k)
      {
        /* Note that p and e have been updated at a previous iteration */

        if(p_eL2<=eps3)
        { /* error is small */
          stop=6;
          break;
        }

        /* Compute the jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
         * Since J^T J is symmetric, its computation can be speeded up by computing
         * only its upper triangular part and copying it to the lower part
         */

        jacf(p, jac, adata); ++njev;

        /* J^T J, J^T e */
        if(nm<__BLOCKSZ__SQ)
        { // this is a small problem
          /* This is the straightforward way to compute J^T J, J^T e. However, due to
           * its noncontinuous memory access pattern, it incures many cache misses when
           * applied to large minimization problems (i.e. problems involving a large
           * number of free variables and measurements), in which J is too large to
           * fit in the L1 cache. For such problems, a cache-efficient blocking scheme
           * is preferable.
           *
           * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
           * performance problem.
           *
           * On the other hand, the straightforward algorithm is faster on small
           * problems since in this case it avoids the overheads of blocking. 
           */

          for(i=0; i<m; ++i)
          {
            for(j=i; j<m; ++j)
            {
              int lm;

              if (weights == null)
              {
                for (l = 0, tmp = 0.0; l < n; ++l)
                {
                  lm = l * m;
                  tmp += jac[lm + i] * jac[lm + j];
                }
              }
              else
              {
                for (l = 0, tmp = 0.0; l < n; ++l)
                {
                  lm = l * m;
                  tmp += jac[lm + i] * jac[lm + j] * weights[i] * weights[i];
                }
              }

              /* store tmp in the corresponding upper and lower part elements */
              jacTjac[i*m+j]=jacTjac[j*m+i]=tmp;
            }

            /* J^T e */
            for(l=0, tmp=0.0; l<n; ++l)
              tmp+=jac[l*m+i]*e[l];
            jacTe[i]=tmp;
          }
        }
        else
        { // this is a large problem
          /* Cache efficient computation of J^T J based on blocking
           */
          TRANS_MAT_MAT_MULT(jac, jacTjac, n, m, __BLOCKSZ__,weights);

          /* cache efficient computation of J^T e */
          for(i=0; i<m; ++i)
            jacTe[i]=0.0;

          for(i=0; i<n; ++i)
          {
            int jacrow;

            for(l=0, jacrow=i*m, tmp=e[i]; l<m; ++l)
              jacTe[l]+=jac[jacrow+l]*tmp;
          }
        }

        /* Compute ||J^T e||_inf and ||p||^2 */
        for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i)
        {
          if(jacTe_inf < (tmp=Math.Abs(jacTe[i]))) jacTe_inf=tmp;

          diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
          p_L2+=p[i]*p[i];
        }
        //p_L2=sqrt(p_L2);

#if false
if(!(k%100)){
  printf("Current estimate: ");
  for(i=0; i<m; ++i)
    printf("%.9g ", p[i]);
  printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
}
#endif

        /* check for convergence */
        if((jacTe_inf <= eps1))
        {
          Dp_L2=0.0; /* no increment for p in this case */
          stop=1;
          break;
        }

        /* compute initial damping factor */
        if(k==0)
        {
          for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
            if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
          mu=tau*tmp;
        }

        /* determine increment using adaptive damping */
        while(true)
        {
          /* augment normal equations */
          for(i=0; i<m; ++i)
            jacTjac[i*m+i]+=mu;

          /* solve augmented equations */
#if HAVE_LAPACK
      /* 5 alternatives are available: LU, Cholesky, 2 variants of QR decomposition and SVD.
       * Cholesky is the fastest but might be inaccurate; QR is slower but more accurate;
       * SVD is the slowest but most accurate; LU offers a tradeoff between accuracy and speed
       */

      issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m);
      //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m);
      //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m);

#else
    
          /* use the LU included with levmar */
          issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m);
#endif // HAVE_LAPACK 

          if(0!=issolved)
          {
            /* compute p's new estimate and ||Dp||^2 */
            for(i=0, Dp_L2=0.0; i<m; ++i)
            {
              pDp[i]=p[i] + (tmp=Dp[i]);
              Dp_L2+=tmp*tmp;
            }
            //Dp_L2=sqrt(Dp_L2);

            if(Dp_L2<=eps2_sq*p_L2)
            { /* relative change in p is small, stop */
              //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
              stop=2;
              break;
            }

            if(Dp_L2>=(p_L2+eps2)/((EPSILON)*(EPSILON)))
            { /* almost singular */
              //if(Dp_L2>=(p_L2+eps2)/CNST(EPSILON)){ /* almost singular */
              stop=4;
              break;
            }

            func(pDp, hx, adata); ++nfev; /* evaluate function at p + Dp */
            if (weights == null)
            {
              for (i = 0, pDp_eL2 = 0.0; i < n; ++i)
              { /* compute ||e(pDp)||_2 */
                hx[i] = tmp = x[i] - hx[i];
                pDp_eL2 += tmp * tmp;
              }
            }
            else // use weights
            {
              for (i = 0, pDp_eL2 = 0.0; i < n; ++i)
              { /* compute ||e(pDp)||_2 */
                hx[i] = tmp = (x[i] - hx[i])*weights[i];
                pDp_eL2 += tmp * tmp;
              }
            }

            for(i=0, dL=0.0; i<m; ++i)
              dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);

            dF=p_eL2-pDp_eL2;

            if(dL>0.0 && dF>0.0)
            { /* reduction in error, increment is accepted */
              tmp=((2.0)*dF/dL-(1.0));
              tmp=(1.0)-tmp*tmp*tmp;
              mu=mu*( (tmp>=(ONE_THIRD))? tmp : (ONE_THIRD) );
              nu=2;

              for(i=0 ; i<m; ++i) /* update p's estimate */
                p[i]=pDp[i];

              for(i=0; i<n; ++i) /* update e and ||e||_2 */
                e[i]=hx[i];
              p_eL2=pDp_eL2;
              break;
            }
          }

          /* if this point is reached, either the linear system could not be solved or
           * the error did not reduce; in any case, the increment must be rejected
           */

          mu*=nu;
          nu2=nu<<1; // 2*nu;
          if(nu2<=nu)
          { /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
            stop=5;
            break;
          }
          nu=nu2;

          for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
            jacTjac[i*m+i]=diag_jacTjac[i];
        } /* inner loop */
      }

      if(k>=itmax) stop=3;

      for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
        jacTjac[i*m+i]=diag_jacTjac[i];

      if(null!=info)
      {
        info[0]=init_p_eL2;
        info[1]=p_eL2;
        info[2]=jacTe_inf;
        info[3]=Dp_L2;
        for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
          if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
        info[4]=mu/tmp;
        info[5]=(double)k;
        info[6]=(double)stop;
        info[7]=(double)nfev;
        info[8]=(double)njev;
      }

      /* covariance matrix */
      if(null!=covar)
      {
        LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
      }

      return (stop!=4)?  k : -1;
    }
Esempio n. 8
0
        GetIndependentVariables()
        {
            for (int i = 0; i < NumberOfIndependentVariables; ++i)
            {
                int k = i;

                string nameOfVariable = null != FitFunction && i < FitFunction.NumberOfIndependentVariables ? FitFunction.IndependentVariableName(i) : string.Empty;
                yield return(
                    nameOfVariable,
                    _independentVariables[k]?.Document,
Esempio n. 9
0
        void CalculateCurveFit(Common.Vbo handle)
        {
            int num       = handle.selectedVertices.Count;
            var pointsMat = new MathNet.Numerics.LinearAlgebra.Double.DenseMatrix(num, 3);
            var points    = new Vector3[num];

            //get selected points
            for (int i = 0; i < num; i++)
            {
                pointsMat[i, 0] = handle.verticesData.vertices[handle.selectedVertices[i]].X;
                pointsMat[i, 1] = handle.verticesData.vertices[handle.selectedVertices[i]].Y;
                pointsMat[i, 2] = handle.verticesData.vertices[handle.selectedVertices[i]].Z;

                points[i] = handle.verticesData.vertices[handle.selectedVertices[i]];
            }

            //find the plane which holds the least distance to all ponits using SVD
            Common.Plane curve_plane = NormalPlane(pointsMat);
            curve_plane.valid = true;
            Planes[GetSelectedVbOIndex() - 1][CURVEPLANE_INDEX] = curve_plane;

            if (Planes[GetSelectedVbOIndex() - 1][OCCLUSALPLANE_INDEX] != null &&
                Planes[GetSelectedVbOIndex() - 1][OCCLUSALPLANE_INDEX].valid)
            {
                double angle = Planes[GetSelectedVbOIndex() - 1][CURVEPLANE_INDEX].Angle2Plane(Planes[0][OCCLUSALPLANE_INDEX]);
                lb_curve2occlusalPlane.Text = "Angle to Occlusal Plane: " + angle.ToString("F2");
            }

            //calculate sum of distances to this plane
            double sumOfSquaredDistances = 0;

            double[] z_distances = new double[num];
            for (int i = 0; i < num; ++i)
            {
                double d = curve_plane.Distance2Point(points[i]);
                z_distances[i]         = d;
                sumOfSquaredDistances += Math.Pow(d, 2);
            }
            double rmse_z = Math.Sqrt(sumOfSquaredDistances / num);


            // find the x and y direction on the plane
            var p0  = new Vector3(curve_plane.ProjectPointOnPlane(new Vector3(0, 0, 0)));
            var px  = new Vector3(curve_plane.ProjectPointOnPlane(points[num - 1] - points[0]));                //new Vector3(1, 0, 0)));
            var py  = new Vector3(curve_plane.ProjectPointOnPlane(Vector3.Cross(curve_plane.GetNormal(), px))); //new Vector3(0, 1, 0)));
            var pvx = (px - p0);
            var pvy = (py - p0);

            pvx.Normalize();
            pvy.Normalize();


            //project 3D points on the plane and create a 2D point set
            var points2DX = new double[num];
            var points2DY = new double[num];

            for (int i = 0; i < num; ++i)
            {
                points2DX[i] = Vector3.Dot(pvx, points[i] - p0);
                points2DY[i] = Vector3.Dot(pvy, points[i] - p0);
            }

            //check and fix inverse y mode
            if (points2DY[0] < points2DY[points2DY.Length / 2])
            {
                points2DY = points2DY.Select(el => - el).ToArray();
            }

            //move points to fit on the screen
            var xMin = points2DX.Min();
            var yMin = points2DY.Min();

            for (int i = 0; i < num; ++i)
            {
                points2DX[i] -= xMin;
                points2DY[i] -= yMin;

                points2DX[i] += 10;
                points2DY[i] += 10;
            }


            //drawing projected points
            var graphics = pl_curveFit.CreateGraphics();

            graphics.Clear(Color.White);
            for (int i = 0; i < num; ++i)
            {
                DrawPoint2DOnControl(graphics, new PointF((float)points2DX[i], (float)points2DY[i]), Color.Black, 4);
            }
            //DrawPoint2DOnControl(graphics, new PointF((float)10, (float)20), Color.Red, 10);

            //change of parameter
            var diffx = Diff(points2DX);
            var diffy = Diff(points2DY);

            diffx = diffx.Select(el => el * el).ToArray();
            diffy = diffy.Select(el => el * el).ToArray();
            double[] t = new double[num];
            for (int i = 0; i < num; ++i)
            {
                if (i > 0)
                {
                    t[i] = Math.Sqrt(diffx[i] + diffy[i]) + t[i - 1];
                }
                else
                {
                    t[i] = Math.Sqrt(diffx[i] + diffy[i]);
                }
            }

            //fit curve params
            int         deg         = (int)nUpDown_order.Value;
            FitFunction fitFunction = config.fitFunction;

            //fit x and y to t
            DenseVector Wx;
            DenseVector Wy;

            try
            {
                //f = Fit.Polynomial(xdata, ydata, order);
                Wx = FitLeastSquaresBasis(t, points2DX, fitFunction, deg);
                Wy = FitLeastSquaresBasis(t, points2DY, fitFunction, deg);
            }
            catch (Exception e)
            {
                Common.Logger.Log("MainForm", "curveFit.cs", "CalculateCurveFit",
                                  e.Message);
                MessageBox.Show("The order of polynomial is too high and " +
                                "results are unstable. Please use a lower " +
                                "degree polynomial.",
                                "Error in Curve Fitting");
                return;
            }

            // create polynomial curve struct (for later to match to the wire brackets)
            CurveFit[GetSelectedVbOIndex() - 1].CoeffsX     = Wx;
            CurveFit[GetSelectedVbOIndex() - 1].CoeffsY     = Wy;
            CurveFit[GetSelectedVbOIndex() - 1].degree      = deg;
            CurveFit[GetSelectedVbOIndex() - 1].minT        = t.Min() - 5;
            CurveFit[GetSelectedVbOIndex() - 1].maxT        = t.Max() + 5;
            CurveFit[GetSelectedVbOIndex() - 1].fitFunction = fitFunction;

            //calculate xx and yy
            //const double stepSize = 0.01;
            //double mint = t.Min();
            //double maxt = t.Max();
            //int numCurve = (int)((maxt - mint) / stepSize);
            //double[] tt = new double[numCurve];
            //for (int i = 0; i < numCurve; i++)
            //{
            //    tt[i] = mint + stepSize * i;
            //}

            //var TT = MakeBasis(tt, fitFunction, deg);
            //var XX = TT * Wx;
            //var YY = TT * Wy;

            Tuple <DenseVector, DenseVector> tempTuple = ParametricPolynomial_to_2DPoints(CurveFit[GetSelectedVbOIndex() - 1]);
            DenseVector XX = tempTuple.Item1;
            DenseVector YY = tempTuple.Item2;

            DrawCurve(graphics, XX, YY, Color.Blue);

            //least squares

            //DenseVector W;
            //try
            //{
            //    //f = Fit.Polynomial(xdata, ydata, order);
            //    W = FitLeastSquaresBasis(xdata, ydata, fitFunction, deg);
            //}
            //catch (Exception e)
            //{
            //    MessageBox.Show("The order of polynomial is too high and results are unstable. Please use a lower degree polynomial.", "Error in Curve Fitting");
            //    return;
            //}


            //draw the blue curve
            //DrawCurve(graphics, W, xdata.Min()-4, xdata.Max()+4, fitFunction, deg);

            //calculate Error
            //var rmse_xy = CalculatePerpendicularDistancePointToCurve(xdata, ydata, W, fitFunction, deg, graphics);
            double[] xy_distances;
            int[]    closestPointsIndexOnCurve;
            var      rmse_xy = CalculatePerpendicularDistancePointToCurve(points2DX, points2DY, XX, YY, graphics,
                                                                          out xy_distances, out closestPointsIndexOnCurve);

            //fill the list view with point distances
            lv_pointDistance.Clear();
            lv_pointDistance.Columns.Add("Pt", 20, HorizontalAlignment.Center);
            lv_pointDistance.Columns.Add("off", 40, HorizontalAlignment.Center);
            lv_pointDistance.Columns.Add("intra", 40, HorizontalAlignment.Center);

            for (int i = 0; i < num; ++i)
            {
                lv_pointDistance.Items.Add(new ListViewItem(new string[]
                {
                    i.ToString(),
                    z_distances[i].ToString("F2"),
                    xy_distances[i].ToString("F2")
                }));
            }
            if (lv_pointDistance.Items.Count > 0)
            {
                lv_pointDistance.Items[0].Selected = true;
            }

            lb_curvefit_rmse_xy.Text = "in-plane RMS Error:   " + rmse_xy.ToString("F2");
            lb_curvefit_rmse_z.Text  = "off-plane RMS Error:  " + rmse_z.ToString("F2");


            // write results to disk
            string resultsDir = "Results";

            if (!System.IO.Directory.Exists(resultsDir))
            {
                System.IO.Directory.CreateDirectory(resultsDir);
            }

            string save_path = System.IO.Path.Combine(
                resultsDir, "CurveFitResults_" + GetSelectedVbOIndex().ToString() + ".csv");
            var writer = new StreamWriter(save_path);

            writer.WriteLine("Point Number,X,Y,Z,Projected on WirePlane (X),Projected on WirePlane (Y)," +
                             "Nearest Point on 2D Wire (projected wire) (X),Nearest Point on 2D Wire(projected wire)(Y)," +
                             "InPlane Distance,OffPlane Distance");

            for (int i = 0; i < num; ++i)
            {
                writer.Write(i.ToString() + ",");
                writer.Write(points[i].X.ToString() + ",");
                writer.Write(points[i].Y.ToString() + ",");
                writer.Write(points[i].Z.ToString() + ",");
                writer.Write(points2DX[i].ToString() + ",");
                writer.Write(points2DY[i].ToString() + ",");
                writer.Write(XX[closestPointsIndexOnCurve[i]].ToString() + ",");
                writer.Write(YY[closestPointsIndexOnCurve[i]].ToString() + ",");
                writer.Write(xy_distances[i].ToString() + ",");
                writer.Write(z_distances[i].ToString());
                writer.WriteLine("");
            }
            writer.Close();
            status.Text = "Results of curve fitting are saved in: " + save_path;
        }